File: regress.mpt

package info (click to toggle)
mathpiper 0.81f%2Bsvn4469%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: buster, jessie, jessie-kfreebsd, stretch
  • size: 36,552 kB
  • ctags: 8,348
  • sloc: java: 57,479; lisp: 13,721; objc: 1,300; xml: 988; makefile: 114; awk: 95; sh: 38
file content (610 lines) | stat: -rw-r--r-- 19,807 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

NextTest("Regression on bug reports");

Verify(N(Sin(a)),Sin(a));
LogicVerify(CanProve(P Or (Not P And Not Q)),P Or Not Q);
Verify(Cos(0),1);
Verify(Infinity/Infinity,Undefined);
Verify(Sqrt(Infinity),Infinity);
Verify(1^Infinity,Undefined);
Verify((-2)*Infinity,-Infinity);
Verify(Infinity*0,Undefined);
Verify(Limit(x,Infinity) (-x^2+1)/(x+2),-Infinity);
Verify(Limit(x,-Infinity)Exp(2*x),0);
Verify(Limit(x,Infinity)(1+1/x)^x,Exp(1));
Verify(Limit(x,Infinity)(1+2/x)^x,Exp(2));
Verify(Limit(x,Infinity)(1+1/x)^(2*x),Exp(2));
Verify(Limit(x,Infinity)-2*x,-Infinity);
Verify(Limit(x,Infinity)(x^2+1)/(-x^3+1),0);

Verify(Limit(x,0)1/x,Undefined);
Verify(Limit(x,0,Right)1/x,Infinity);
Verify(Limit(x,0,Left)1/x,-Infinity);

Verify([Local(a);a:=0.1;Simplify((a*b*c)/(a*c*b));],1);

LogicVerify(CanProve(P Or (Not P And Not Q)),P Or Not Q);
LogicVerify(CanProve(A>0 And A<=0),False);
LogicVerify(CanProve(A>0 Or A<=0),True);
Verify(A<0,A<0);
Verify(A>0,A>0);
TestMathPiper(Arg(Exp(2*I*Pi/3)),2*Pi/3);

TestMathPiper(Content(1/2*x+1/2),1/2);
TestMathPiper(PrimitivePart(1/2*x+1/2),x+1);
TestMathPiper(Content(1/2*x+1/3),1/6);
TestMathPiper(PrimitivePart(1/2*x+1/3),3*x+2);

// Mod generated a stack overflow on floats.
Verify(Modulo(1.2,3.4),6/5);
//TODO I need to understand why we need to put Eval here. Modulo(-1.2,3.4)-2.2 returns 0/5 where the 0 is not an integer according to the system. Round-off error?
NumericEqual(N(Eval(Modulo(-1.2,3.4))),2.2,BuiltinPrecisionGet());
Verify(Modulo(-12/10,34/10),11/5);
// just a test to see if Verify still gives correct error Verify(N(Modulo(-12/10,34/10)),11/5);


// some reports:

LocalSymbols(f,p,a,b,x,n)
[
  f(_n) <-- Apply("Differentiate",{x,n, x^n});
  Verify(f(10)-(10!));

  p := a+2-(a+1);
  Verify(Simplify(x^p),x);
];

LocalSymbols(f,p,a,b,x,n,simple,u,v)
[
  simple := {
            Exp(_a)*Exp(_b) <- Exp(a+b), 
            Exp(_a)*_u*Exp(_b) <- u*Exp(a+b),
            _u*Exp(_a)*Exp(_b) <- u*Exp(a+b),
            Exp(_a)*Exp(_b)*_u <- u*Exp(a+b),
            _u*Exp(_a)*_v*Exp(_b) <- u*v*Exp(a+b),
            Exp(_a)*_u*Exp(_b)*_v <- u*v*Exp(a+b),
            _u*Exp(_a)*Exp(_b)*_v <- u*v*Exp(a+b),
            _u*Exp(_a)*_v*Exp(_b)*_w <- u*v*w*Exp(a+b)
          };

  a := Simplify(Exp(x)*(Differentiate(x) x*Exp(-x)));
  b := Exp(x)*Exp(-x)-Exp(x)*x*Exp(-x);

  a:= (a /: simple);
  b:= (b /: simple);
  
  Verify(Simplify(a-(1-x)),0);
  Verify(Simplify(b-(1-x)),0);

];

// Verify that postfix operators can be applied one after the other
// without brackets
Verify((3!) !, 720);
Verify(3! !, 720);

TestMathPiper(TrigSimpCombine(Exp(A*X)),Exp(A*X));
TestMathPiper(TrigSimpCombine(x^Sin(a*x+b)),x^Sin(a*x+b));
Verify(CanBeUni(x^(-1)),False);


f(x):=Eval(Factor(x))=x;
Verify(f(703), True);
Verify(f(485), True);
Verify(f(170410240), True);





/* bug reported by Jonathan:
   All functions that do not have Taylor Expansions about
   the given point go into infinite loops.
 */

Verify(Taylor(x,0,5) Ln(x),Undefined);
Verify(Taylor(x,0,5) 1/x,Undefined);
Verify(Taylor(x,0,5) 1/Sin(x),Undefined);

// Yacas used to not simplify the following, due to Pi being
// considered constant. The expression was thus not expanded
// as a univariate polynomial in Pi
TestMathPiper(2*Pi/3,(Pi-Pi/3));

TestMathPiper(( a*(Sqrt(Pi))^2/2), (a*Pi)/2);
TestMathPiper(( 3*(Sqrt(Pi))^2/2), (3*Pi)/2); 
TestMathPiper(( a*(Sqrt(b ))^2/2), (a*b)/2);

// Bug was found: gcd sometimes returned 0! Very bad, since the 
// value returned by gcd is usually used to divide out greatest
// common divisors, and dividing by zero is not a good idea.
Verify(Gcd(0,0),1);
Verify(Gcd({0}),1);

// Product didn't check for correct input
Verify(Product(10), Product(10));
Verify(Product(-1), Product(-1));
Verify(Product(Infinity), Product(Infinity));
Verify(Product(1 .. 10),3628800);

//
TestMathPiper(Sin(Pi-22),-Sin(22-Pi));
TestMathPiper(Cos(Pi-22), Cos(22-Pi));

// Verify that some matrix functions accept only positive
// integer arguments. Regression test for the fact that the functions
// in org/mathpiper/scripts/linalg.rep/ didn't check their arguments.

// Note: Jonathan, perhaps some functions could return something
// useful if the argument passed in is just a number? I'd imagine
// Inverse(-2) <-- -1/2 would not be inconsistent?

Verify(ZeroMatrix(-2,-2),ZeroMatrix(-2,-2));
Verify(Identity(-2),Identity(-2));
//Verify(LeviCivita(2),LeviCivita(2));
//Verify(Permutations(2),Permutations(2));
//Verify(InProduct(-2,-2),InProduct(-2,-2));
//Verify(CrossProduct(-2,-2),CrossProduct(-2,-2));
//Verify(BaseVector(-2,-2),BaseVector(-2,-2));
//Verify(DiagonalMatrix(-2),DiagonalMatrix(-2));
//Verify(Normalize(-2),Normalize(-2));
//Verify(Transpose(-2),Transpose(-2));
//Verify(Determinant(-2),Determinant(-2));
//Verify(CoFactor(-2,-2,-2),CoFactor(-2,-2,-2));
//Verify(Inverse(-2),Inverse(-2));
//Verify(Trace(-2),Trace(-2));
//Verify(SylvesterMatrix(-2,-2,-2),SylvesterMatrix(-2,-2,-2));
Verify(ZeroVector(-2),ZeroVector(-2));

Verify(Sech(x),1/Cosh(x));
Verify(Cot(x),1/Tan(x));

// Matrix operations failed: a^2 performed the squaring on each element
Verify({{1,2},{3,4}}^2,{{7,10},{15,22}});
// And check that raising powers still works on lists/vectors (dotproduct?) correctly
Verify({2,3}^2,{4,9});

Verify( Differentiate(x,0) Sin(x), Sin(x) );

Verify( 2/3 >= 1/3, True);

Verify( Infinity + I, Complex(Infinity,1) );
Verify( Infinity - I, Complex(Infinity,-1) );
Verify( I - Infinity,Complex(-Infinity,1) );
Verify( I + Infinity, Complex(Infinity,1) );
Verify( I*Infinity,Complex(0,Infinity)); //Changed Ayal: I didn't like the old definition
Verify(-I*Infinity,Complex(0,-Infinity)); //Changed Ayal: I didn't like the old definition
Verify( Infinity*I,Complex(0,Infinity)); //Changed Ayal: I didn't like the old definition
Verify(  Infinity^I,Undefined);//Changed Ayal: I didn't like the old definition (it is undefined, right?)
Verify( (2*I)^Infinity, Infinity );
Verify( Infinity/I,Infinity );
Verify( Sign(Infinity), 1 );
Verify( Sign(-Infinity), -1 );

Verify( Limit(n, Infinity) (n+1)/(2*n+3)*I, Complex(0,1/2) );
Verify( Limit(x, Infinity) x*I, Complex(0,Infinity) ); //Changed Ayal: I didn't like the old definition

Verify(Integrate(x) z^100, z^100*x );
Verify(Integrate(x) x^(-1),Ln(x) );

BuiltinPrecisionSet(50);

NumericEqual(
RoundToN(N(ArcSin(0.0000000321232123),50),50)
, 0.000000032123212300000005524661243020493367846793163005802
,50);

Verify(Internal'LnNum(1), 0);

Verify(BinomialCoefficient(0,0),1 );

Verify(0|1, 1);
Verify(0&1, 0);
Verify(0%1, 0);

Verify(0.0/Sqrt(2),0);
Verify(0.0000000000/Sqrt(2),0);
Verify(0.0000^(24),0);

Verify(Bernoulli(24), -236364091/2730);

Verify(Gamma(1/2), Sqrt(Pi));

// Coef accepted non-integer arguments as second argument, and
// crashed on it.
Verify(Coef(3*Pi,Pi),Coef(3*Pi,Pi));
Verify(Coef(3*Pi,x), Coef(3*Pi,x));

// Univariates in Pi did not get handled well, due to Pi being
// considered a constant, non-variable.
Verify(Degree(Pi,Pi),1);
Verify(Degree(2*Pi,Pi),1);

Verify(Sin(2*Pi), 0);
Verify(Cos(2*Pi), 1);
Verify(Cos(4*Pi), 1);
Verify(Sin(3*Pi/2)+1, 0);
Verify(Sin(Pi/2), 1);

// - and ! operators didn't get handled correctly in the
// parser/pretty printer (did you fix this, Serge?)
Verify(PipeToString()Write((-x)!),"(-x)!");

// some interesting interaction between the rules...
Verify(x*x*x,x^3,);
Verify(x+x+x,3*x);
Verify(x+x-x+x,2*x);


// bugs with complex numbers
Verify((1+I)^0, 1);
Verify((-I)^0, 1);
Verify((2*I)^(-10), -1/1024);
Verify((-I)^(-10), -1);
Verify((1-I)^(-10), Complex(0,1/32));
Verify((1-I)^(+10), Complex(0,-32));
Verify((1+2*I)^(-10), Complex(237/9765625,3116/9765625));
Verify((1+2*I)^(+10), Complex(237,-3116));

// expansion of negative powers of fractions
Verify( (-1/2)^(-10), 1024);

Verify( I^(Infinity), Undefined );
Verify( I^(-Infinity), Undefined );
Verify( Limit(n,Infinity) n*I^n, Undefined );

Verify(1 <= 1.0, True);
Verify(-1 <= -1.0, True);
Verify(0 <= 0.0, True);
Verify(0.0 <= 0, True);
Verify(1 >= 1.0, True);
Verify(-1 >= -1.0, True);
Verify(0 >= 0.0, True);
Verify(0.0 >= 0, True);

Verify((1==1) != True, True);
Verify((a==a) != True, True);
Verify((1==2) != False, True);
Verify((a==2) != False, True);

Verify( Integrate(x) x^5000, x^5001/5001 );

Verify( Integrate(x) Sin(x)/2, (-Cos(x))/2 );

Verify( 2^(-10), 1/1024 );

// The following line catches a bug reported where Simplify
// would go into an infinite loop. It doesn't check the correctness
// of the returned value as such, but merely the fact that this
// simplification terminates in the first place. 
//
// The problem was caused by a gcd calculation (from the multivariate
// code) not terminating.
Verify( Simplify((a^2+b^2)/(2*a)), (a^2+b^2)/(2*a) );

// The following is a classical error: 0*x=0 is only true if
// x is a number! In this case, it is checked for that the
// multiplication of 0 with a vector returns a zero vector.
// This would automatically be caught with type checking.
// More tests of this ilk are possible: 0*matrix, etcetera.
Verify(0*{a,b,c},{0,0,0});

// the following broke evaluation (dr)
Verify(Conjugate({a}),{a});

// not yet fixed (dr)
Verify(Abs(Undefined),Undefined);

// broke Plot2Differentiate() on singular functions with Abs()
Verify(Undefined<1, False);
Verify(Undefined>Undefined, False);
Verify(Undefined>1, False);
Verify(Undefined >= -4, False);
Verify(Undefined <= -4, False);

// Jonathan's bug report
BuiltinPrecisionSet(10);
NumericEqual(N(Cos(Pi*.5),BuiltinPrecisionGet()), 0,BuiltinPrecisionGet());

/* Jitse's bug report, extended with the changes that do not coerce integers to floats automatically 
   any more (just enter a dot and the number becomes float if that is what is intended).
 */
Verify(CForm(4), "4");
Verify(CForm(4.), "4.");
Verify(CForm(0), "0");
Verify(CForm(0.), "0.");

// Discovered that Floor didn't handle new exponent notation
Verify(Floor(1001.1e-1),100);
Verify(Floor(10.01e1),100);
Verify(Floor(100.1),100);

// Bugs discovered by Jonathan:
Verify(Undefined*0,Undefined);
// Actually, the following Groebner test is just to check that the program doesn't crash on this,
// more than on the exact result (which is hopefully correct also ;-) )
Verify(Groebner({x*(y-1),y*(x-1)}),{x*y-x,x*y-y,y-x,y^2-y});

// Reported by Yannick Versley
Verify((Integrate(x,a,b)Cos(x)^2) - ((b-Sin((-2)*b)/2)/2-(a-Sin((-2)*a)/2)/2),0);
Verify(Differentiate(t) Integrate(x,a,b) f(x,t),Integrate(x,a,b)Deriv(t)f(x,t));

// This was returning FWatom(Sin(x)) 
Verify( Factor(Sin(x)), Factor(Sin(x)) );

// should return unevaled
Verify( BesselJ(0,x), BesselJ(0,x) );


// FunctionToList and ListToFunction coredumped when their arguments were invalid
Verify(FunctionToList(Cos(x)),{Cos,x});
Verify(ListToFunction({Cos,x}),Cos(x));

[
  Local(exception);

  exception := False;
  ExceptionCatch(FunctionToList(1.2), exception := ExceptionGet());
  Verify(exception = False, False);

  exception := false;
  ExceptionCatch(ListToFunction(1.2), exception := ExceptionGet());
  Verify(exception = False, False);
];

// Reported by Serge: xml tokenizer not general enough
Verify(XmlExplodeTag("<p/>"),   XmlTag("P",{},"OpenClose"));
Verify(XmlExplodeTag("<p / >"), XmlTag("P",{},"OpenClose"));

Verify(ToBase(16,30),"1e");
Verify(FromBase(16,"1e"),30);

// numbers are too small because of wrong precision handling
BuiltinPrecisionSet(30);
Verify(0.00000000000000000005421010862 = 0, False);	// 2^(-64)
Verify(0.00000000000000000005421010862 / 1 = 0, False);
Verify(0.00000000000000000005421010862 / 2 = 0, False);
Verify(0.00000000000000000001 = 0, False);
Verify(0.00000000000000000001 / 2 = 0, False);
Verify(0.00000000000000000000000000001 = 0, False);
Verify(0.000000000000000000000000000001 = 0, False);
Verify((0.0000000000000000000000000000000000000001 = 0), False);
// I added another one, the code will currently say that 0.0000...00001=0 is True
// for a sufficient amount of zeroes, regardless of precision. Either that is good
// or that is bad, but the above tests didn't go far enough. This one makes it
// more explicit, unless we move over to a 128-bits system ;-)
Verify((0.0000000000000000000000000000000000000000000000001 = 0), False);


// Problem with FloatIsInt and gmp
Verify(FloatIsInt(3.1415926535e9), False);
Verify(FloatIsInt(3.1415926535e10), True);
Verify(FloatIsInt(3.1415926535e20), True);
Verify(FloatIsInt(0.3e20), True);

/* Regression on bug reports from docs/bugs.txt */

/* Bug #1 */
/* Can't test: 'Limit(x,0)Differentiate(x,2)Sin(x)/x' never terminates */

/* Bug #2 */
KnownFailure((Limit(x,Infinity) x^n/Ln(x)) = Infinity);
KnownFailure((Limit(x,0,Right) x^(Ln(a)/(1+Ln(x)))) = a);
Verify((Limit(x,0) (x+1)^(Ln(a)/x)), a);
/* Note paren's around bodied operators like Limit, D, Integrate;
   otherwise it's parsed as Limit (... = ...) */

/* Bug #3 */
KnownFailure(Gcd(10,3.3) != 3.3 And Gcd(10,3.3) != 1);
/* I don't know what the answer should be, but buth 1 and 3.3 seem */
/* certainly wrong. */
Verify(Gcd(-10, 0), 10);
Verify(Gcd(0, -10), 10);

/* Bug #4 */
/* How can we test for this? */
/* Bug says: at startup, 2^Infinity does not simplify to Infinity */

/* Bug #5 */
/* How can we test for this? */
/* Bug says: Limit(n,Infinity) Sqrt(n+1)-Sqrt(n) floods stack */
/* but 'MaxEvalDepth reached' exits Yacas, even inside ExceptionCatch */

/* Bug #6 */
KnownFailure((Differentiate(z) Conjugate(z)) = Undefined);

/* Bug #7 */
Verify(Im(3+I*Infinity), Infinity); /* resolved */
Verify(Im(3+I*Undefined), Undefined);

/* Bug #9 */
Verify((Integrate(x,-1,1) 1/x), 0); /* or maybe Undefined? */
Verify((Integrate(x,-1,1) 1/x^2), Infinity);

/* Bug #10 */
Verify(Simplify(x^(-2)/(1-x)^3) != 0);
/* I don't know what we want to return, but '0' is definitely wrong! */

/* Bug #11 */
Verify(ArcCos(Cos(beta)) != beta);

/* Bug #12 */
KnownFailure((Limit(n, Infinity) n^5/2^n) = 0);

/* Bug #13 */
/* Cannot test; TrigSimpCombine(x^500) floods stack */

/* Bug #14 */
Verify((Limit(x,Infinity) Zeta(x)), 1);
// Actually, I changed the Factorial(x) to (x!)
Verify((Limit(x,Infinity) (x!)), Infinity);

/* Bug #15 */
Verify(PowerN(0,0.55), 0);
// LogN(-1) locks up in gmpnumbers.cpp, will be fixed in scripts
//FIXME this test should be uncommented eventually
// Verify(ExceptionCatch(PowerN(-1,-0.5), error), error);

/* Bug #16 */
/* Can't test, bug in build system */

/* Bug #17 */
Verify(Assoc(x-1, Factors(x^6-1))[2], 1);

/* Bug #18 */
//Changed, see next line TestMathPiper(Integrate(x) x^(1/2), 2/3*x^(3/2));
TestMathPiper(Integrate(x) x^(1/2), (2/3)*Sqrt(x)^(3));

Verify(a[2]*Sin(x)/:{Sin(_x) <- sin(x)},a[2]*sin(x));

// There was a bug, reported by Sebastian Ferraro, which caused the determinant
// to return "Undefined" when one of the elements of the diagonal of a matrix
// was zero. This was due to the numeric determinant algorithm applying 
// Gaussian elimination, but taking the elements on the diagonal as pivot points.
Verify(IsZero(Determinant( {{1,-1,0,0},{0,0,-1,1},{1,0,0,1},{0,1,1,0}} )),True);

// The following failed when numerics changed so that 0e-1 was not matched to 0 any more in 
// a transformation rule defining the less than operator.
Verify(ExpNum(0),1);
NumericEqual(ExpNum(0e-1),1,BuiltinPrecisionGet());
Verify(500 < 0e-1,False);

// version 1.0.56: Due to MathBitCount returning negative values sometimes, functions depending on 
// proper functioning failed. MathSqrtFloat failed for instance on N(1/2). It did give the right
// result for 0.5.
NumericEqual(N(Sqrt(500000e-6),20),N(Sqrt(0.0000005e6),20),20);
NumericEqual(N(Sqrt(0.5),20),N(Sqrt(N(1/2)),20),20);

// With the changes in numerics, RoundTo seems to have been broken. This line demonstrates the problem.
// The last digit is suddenly rounded down (it used to be 4, correctly, and then gets rounded down to 3).
KnownFailure(RoundTo(RoundTo(N(Cot(2),9),9),N(Cot(2),9),9)=0);

// LogN used to hang on *all* input
Verify(LogN(2)!=0,True);

// Bug that was introduced when going to the new numeric setup where
// numbers were not converted to strings any more. In the situation
// -n*10^-m where n and m positive integers, the number got truncated
// prematurely, resulting in a wrong rounding.
[
  Local(n,m,nkeep,lcl);
  n:=7300 + 12*I;
  m:=2700 + 100*I;
  nkeep:=n;
  n:=m;
  m:=nkeep - m*Round(nkeep/m);
  lcl:=Re(N(n/m))+0.5;
  Verify(FloorN(lcl),-3);
];


/* Here follow some tests for MathBitCount. These were written while creating
   the Java version, fixing BitCount in the process.
 */
Verify(MathBitCount(3),2);
Verify(MathBitCount(3.0),2);

Verify(MathBitCount(4),3);
Verify(MathBitCount(4.0),3);

Verify(MathBitCount(0),0);
Verify(MathBitCount(0.0),0);

Verify(MathBitCount(0.5),0);
Verify(MathBitCount(0.25),-1);
Verify(MathBitCount(0.125),-2);
Verify(MathBitCount(0.0125),-6);

Verify(MathBitCount(-3),2);
Verify(MathBitCount(-3.0),2);

Verify(MathBitCount(-4),3);
Verify(MathBitCount(-4.0),3);

Verify(MathBitCount(-0),0);
Verify(MathBitCount(-0.0),0);

Verify(MathBitCount(-0.5),0);
Verify(MathBitCount(-0.25),-1);
Verify(MathBitCount(-0.125),-2);
Verify(MathBitCount(-0.0125),-6);

// This one ended in an infinite loop because 1 is an even function, and the indefinite integrator
// then kept on calling itself because the left and right boundaries were equal to zero.
Verify(Integrate(x,0,0)1,0);

// This code verifies that if integrating over a zero domain, the result
// is zero. 
Verify(Integrate(x,1,1)Sin(Exp(x^2)),0);

/* Reverse and FlatCopy (and some friends) would segfault in the past if passed a string as argument.
 * I am not opposed to overloading these functions to also work on strings per se, but for now just
 * check that they return an error in stead of segfaulting.
 */ 
Verify(ExceptionCatch(Reverse("abc"),"Exception"), "Exception");
Verify(ExceptionCatch(FlatCopy("abc"),"Exception"), "Exception");

// Make sure Mod works threaded
Verify(Modulo(2,Infinity),2);
Verify(Modulo({2,1},{2,2}),{0,1});
Verify(Modulo({5,1},4),{1,1});

/* In MatchLinear and MatchPureSquare, the matched coefficients were
 * assigned to global variables that were not protected with LocalSymbols.
 */
[
  Local(a,b,A);
  a:=mystr;
  A:=mystr;
  /* The real test here is that no error is generated due to the 
   * fact that variables a or A are set.
   */
  Verify(Simplify((Integrate(x,a,b)Sin(x))-Cos(a)+Cos(b)),0);
];

// Factoring 2*x^2 used to generate an error
Verify(Factor(2*x^2),2*x^2);

/* Bug report from Magnus Petursson regarding determinants of matrices that have symbolic entries */
Verify(CanBeUni(Determinant({{a,b},{c,d}})),True);

/* Bug report from Michael Borcherds. The brackets were missing. */
Verify(TeXForm(Hold(2*x*(-2))), "$2 \\cdot x \\cdot (  - 2) $");

/* Bug reported by Adrian Vontobel. */
[
  Local(A1,A2);
  A1:=Pi*20^2; // 400*Pi
  A2:=Pi*18^2; // 324*Pi
  Verify(Minimum(A1,A2), 324*Pi);
  Verify(Maximum(A1,A2), 400*Pi);
];

/* One place where we forgot to change Sum to Add */
TestMathPiper(Diverge({x*y,x*y,x*y},{x,y,z}),x+y);

/* Bug reported by Adrian Vontobel: comparison operators should coerce
 * to a real value as much as possible before trying the comparison.
 */
[
  Local(F);
  F:=0.2*Pi;
  Verify(F>0.5, True);
  Verify(F>0.7, False);
  Verify(F<0.7, True);
  Verify(F<0.6, False);
];

/* Bug reported by Michael Borcherds: Simplify(((4*x)-2.25)/2) 
   returned some expression with three calls to Gcd, which was technically
   correct, but not the intended simplification.
 */
Verify(IsZero(Simplify(Simplify(((4*x)-2.25)/2)-(2*x-2.25/2))),True);

/* Bug reported by Adrian Vontobel: when assigning an expression to a variable,
 * it did not get re-evaluated in the calling environment when passing it in to Newton.
 * The resulting value was "Undefined", instead of the expected 1.5 .
 */
NumericEqual([  Local(expr); expr := 1800*x/1.5 - 1800; Newton(expr, x,2,0.001); ],1.5,3);