1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
NextTest("Regression on bug reports");
Verify(N(Sin(a)),Sin(a));
LogicVerify(CanProve(P Or (Not P And Not Q)),P Or Not Q);
Verify(Cos(0),1);
Verify(Infinity/Infinity,Undefined);
Verify(Sqrt(Infinity),Infinity);
Verify(1^Infinity,Undefined);
Verify((-2)*Infinity,-Infinity);
Verify(Infinity*0,Undefined);
Verify(Limit(x,Infinity) (-x^2+1)/(x+2),-Infinity);
Verify(Limit(x,-Infinity)Exp(2*x),0);
Verify(Limit(x,Infinity)(1+1/x)^x,Exp(1));
Verify(Limit(x,Infinity)(1+2/x)^x,Exp(2));
Verify(Limit(x,Infinity)(1+1/x)^(2*x),Exp(2));
Verify(Limit(x,Infinity)-2*x,-Infinity);
Verify(Limit(x,Infinity)(x^2+1)/(-x^3+1),0);
Verify(Limit(x,0)1/x,Undefined);
Verify(Limit(x,0,Right)1/x,Infinity);
Verify(Limit(x,0,Left)1/x,-Infinity);
Verify([Local(a);a:=0.1;Simplify((a*b*c)/(a*c*b));],1);
LogicVerify(CanProve(P Or (Not P And Not Q)),P Or Not Q);
LogicVerify(CanProve(A>0 And A<=0),False);
LogicVerify(CanProve(A>0 Or A<=0),True);
Verify(A<0,A<0);
Verify(A>0,A>0);
TestMathPiper(Arg(Exp(2*I*Pi/3)),2*Pi/3);
TestMathPiper(Content(1/2*x+1/2),1/2);
TestMathPiper(PrimitivePart(1/2*x+1/2),x+1);
TestMathPiper(Content(1/2*x+1/3),1/6);
TestMathPiper(PrimitivePart(1/2*x+1/3),3*x+2);
// Mod generated a stack overflow on floats.
Verify(Modulo(1.2,3.4),6/5);
//TODO I need to understand why we need to put Eval here. Modulo(-1.2,3.4)-2.2 returns 0/5 where the 0 is not an integer according to the system. Round-off error?
NumericEqual(N(Eval(Modulo(-1.2,3.4))),2.2,BuiltinPrecisionGet());
Verify(Modulo(-12/10,34/10),11/5);
// just a test to see if Verify still gives correct error Verify(N(Modulo(-12/10,34/10)),11/5);
// some reports:
LocalSymbols(f,p,a,b,x,n)
[
f(_n) <-- Apply("Differentiate",{x,n, x^n});
Verify(f(10)-(10!));
p := a+2-(a+1);
Verify(Simplify(x^p),x);
];
LocalSymbols(f,p,a,b,x,n,simple,u,v)
[
simple := {
Exp(_a)*Exp(_b) <- Exp(a+b),
Exp(_a)*_u*Exp(_b) <- u*Exp(a+b),
_u*Exp(_a)*Exp(_b) <- u*Exp(a+b),
Exp(_a)*Exp(_b)*_u <- u*Exp(a+b),
_u*Exp(_a)*_v*Exp(_b) <- u*v*Exp(a+b),
Exp(_a)*_u*Exp(_b)*_v <- u*v*Exp(a+b),
_u*Exp(_a)*Exp(_b)*_v <- u*v*Exp(a+b),
_u*Exp(_a)*_v*Exp(_b)*_w <- u*v*w*Exp(a+b)
};
a := Simplify(Exp(x)*(Differentiate(x) x*Exp(-x)));
b := Exp(x)*Exp(-x)-Exp(x)*x*Exp(-x);
a:= (a /: simple);
b:= (b /: simple);
Verify(Simplify(a-(1-x)),0);
Verify(Simplify(b-(1-x)),0);
];
// Verify that postfix operators can be applied one after the other
// without brackets
Verify((3!) !, 720);
Verify(3! !, 720);
TestMathPiper(TrigSimpCombine(Exp(A*X)),Exp(A*X));
TestMathPiper(TrigSimpCombine(x^Sin(a*x+b)),x^Sin(a*x+b));
Verify(CanBeUni(x^(-1)),False);
f(x):=Eval(Factor(x))=x;
Verify(f(703), True);
Verify(f(485), True);
Verify(f(170410240), True);
/* bug reported by Jonathan:
All functions that do not have Taylor Expansions about
the given point go into infinite loops.
*/
Verify(Taylor(x,0,5) Ln(x),Undefined);
Verify(Taylor(x,0,5) 1/x,Undefined);
Verify(Taylor(x,0,5) 1/Sin(x),Undefined);
// Yacas used to not simplify the following, due to Pi being
// considered constant. The expression was thus not expanded
// as a univariate polynomial in Pi
TestMathPiper(2*Pi/3,(Pi-Pi/3));
TestMathPiper(( a*(Sqrt(Pi))^2/2), (a*Pi)/2);
TestMathPiper(( 3*(Sqrt(Pi))^2/2), (3*Pi)/2);
TestMathPiper(( a*(Sqrt(b ))^2/2), (a*b)/2);
// Bug was found: gcd sometimes returned 0! Very bad, since the
// value returned by gcd is usually used to divide out greatest
// common divisors, and dividing by zero is not a good idea.
Verify(Gcd(0,0),1);
Verify(Gcd({0}),1);
// Product didn't check for correct input
Verify(Product(10), Product(10));
Verify(Product(-1), Product(-1));
Verify(Product(Infinity), Product(Infinity));
Verify(Product(1 .. 10),3628800);
//
TestMathPiper(Sin(Pi-22),-Sin(22-Pi));
TestMathPiper(Cos(Pi-22), Cos(22-Pi));
// Verify that some matrix functions accept only positive
// integer arguments. Regression test for the fact that the functions
// in org/mathpiper/scripts/linalg.rep/ didn't check their arguments.
// Note: Jonathan, perhaps some functions could return something
// useful if the argument passed in is just a number? I'd imagine
// Inverse(-2) <-- -1/2 would not be inconsistent?
Verify(ZeroMatrix(-2,-2),ZeroMatrix(-2,-2));
Verify(Identity(-2),Identity(-2));
//Verify(LeviCivita(2),LeviCivita(2));
//Verify(Permutations(2),Permutations(2));
//Verify(InProduct(-2,-2),InProduct(-2,-2));
//Verify(CrossProduct(-2,-2),CrossProduct(-2,-2));
//Verify(BaseVector(-2,-2),BaseVector(-2,-2));
//Verify(DiagonalMatrix(-2),DiagonalMatrix(-2));
//Verify(Normalize(-2),Normalize(-2));
//Verify(Transpose(-2),Transpose(-2));
//Verify(Determinant(-2),Determinant(-2));
//Verify(CoFactor(-2,-2,-2),CoFactor(-2,-2,-2));
//Verify(Inverse(-2),Inverse(-2));
//Verify(Trace(-2),Trace(-2));
//Verify(SylvesterMatrix(-2,-2,-2),SylvesterMatrix(-2,-2,-2));
Verify(ZeroVector(-2),ZeroVector(-2));
Verify(Sech(x),1/Cosh(x));
Verify(Cot(x),1/Tan(x));
// Matrix operations failed: a^2 performed the squaring on each element
Verify({{1,2},{3,4}}^2,{{7,10},{15,22}});
// And check that raising powers still works on lists/vectors (dotproduct?) correctly
Verify({2,3}^2,{4,9});
Verify( Differentiate(x,0) Sin(x), Sin(x) );
Verify( 2/3 >= 1/3, True);
Verify( Infinity + I, Complex(Infinity,1) );
Verify( Infinity - I, Complex(Infinity,-1) );
Verify( I - Infinity,Complex(-Infinity,1) );
Verify( I + Infinity, Complex(Infinity,1) );
Verify( I*Infinity,Complex(0,Infinity)); //Changed Ayal: I didn't like the old definition
Verify(-I*Infinity,Complex(0,-Infinity)); //Changed Ayal: I didn't like the old definition
Verify( Infinity*I,Complex(0,Infinity)); //Changed Ayal: I didn't like the old definition
Verify( Infinity^I,Undefined);//Changed Ayal: I didn't like the old definition (it is undefined, right?)
Verify( (2*I)^Infinity, Infinity );
Verify( Infinity/I,Infinity );
Verify( Sign(Infinity), 1 );
Verify( Sign(-Infinity), -1 );
Verify( Limit(n, Infinity) (n+1)/(2*n+3)*I, Complex(0,1/2) );
Verify( Limit(x, Infinity) x*I, Complex(0,Infinity) ); //Changed Ayal: I didn't like the old definition
Verify(Integrate(x) z^100, z^100*x );
Verify(Integrate(x) x^(-1),Ln(x) );
BuiltinPrecisionSet(50);
NumericEqual(
RoundToN(N(ArcSin(0.0000000321232123),50),50)
, 0.000000032123212300000005524661243020493367846793163005802
,50);
Verify(Internal'LnNum(1), 0);
Verify(BinomialCoefficient(0,0),1 );
Verify(0|1, 1);
Verify(0&1, 0);
Verify(0%1, 0);
Verify(0.0/Sqrt(2),0);
Verify(0.0000000000/Sqrt(2),0);
Verify(0.0000^(24),0);
Verify(Bernoulli(24), -236364091/2730);
Verify(Gamma(1/2), Sqrt(Pi));
// Coef accepted non-integer arguments as second argument, and
// crashed on it.
Verify(Coef(3*Pi,Pi),Coef(3*Pi,Pi));
Verify(Coef(3*Pi,x), Coef(3*Pi,x));
// Univariates in Pi did not get handled well, due to Pi being
// considered a constant, non-variable.
Verify(Degree(Pi,Pi),1);
Verify(Degree(2*Pi,Pi),1);
Verify(Sin(2*Pi), 0);
Verify(Cos(2*Pi), 1);
Verify(Cos(4*Pi), 1);
Verify(Sin(3*Pi/2)+1, 0);
Verify(Sin(Pi/2), 1);
// - and ! operators didn't get handled correctly in the
// parser/pretty printer (did you fix this, Serge?)
Verify(PipeToString()Write((-x)!),"(-x)!");
// some interesting interaction between the rules...
Verify(x*x*x,x^3,);
Verify(x+x+x,3*x);
Verify(x+x-x+x,2*x);
// bugs with complex numbers
Verify((1+I)^0, 1);
Verify((-I)^0, 1);
Verify((2*I)^(-10), -1/1024);
Verify((-I)^(-10), -1);
Verify((1-I)^(-10), Complex(0,1/32));
Verify((1-I)^(+10), Complex(0,-32));
Verify((1+2*I)^(-10), Complex(237/9765625,3116/9765625));
Verify((1+2*I)^(+10), Complex(237,-3116));
// expansion of negative powers of fractions
Verify( (-1/2)^(-10), 1024);
Verify( I^(Infinity), Undefined );
Verify( I^(-Infinity), Undefined );
Verify( Limit(n,Infinity) n*I^n, Undefined );
Verify(1 <= 1.0, True);
Verify(-1 <= -1.0, True);
Verify(0 <= 0.0, True);
Verify(0.0 <= 0, True);
Verify(1 >= 1.0, True);
Verify(-1 >= -1.0, True);
Verify(0 >= 0.0, True);
Verify(0.0 >= 0, True);
Verify((1==1) != True, True);
Verify((a==a) != True, True);
Verify((1==2) != False, True);
Verify((a==2) != False, True);
Verify( Integrate(x) x^5000, x^5001/5001 );
Verify( Integrate(x) Sin(x)/2, (-Cos(x))/2 );
Verify( 2^(-10), 1/1024 );
// The following line catches a bug reported where Simplify
// would go into an infinite loop. It doesn't check the correctness
// of the returned value as such, but merely the fact that this
// simplification terminates in the first place.
//
// The problem was caused by a gcd calculation (from the multivariate
// code) not terminating.
Verify( Simplify((a^2+b^2)/(2*a)), (a^2+b^2)/(2*a) );
// The following is a classical error: 0*x=0 is only true if
// x is a number! In this case, it is checked for that the
// multiplication of 0 with a vector returns a zero vector.
// This would automatically be caught with type checking.
// More tests of this ilk are possible: 0*matrix, etcetera.
Verify(0*{a,b,c},{0,0,0});
// the following broke evaluation (dr)
Verify(Conjugate({a}),{a});
// not yet fixed (dr)
Verify(Abs(Undefined),Undefined);
// broke Plot2Differentiate() on singular functions with Abs()
Verify(Undefined<1, False);
Verify(Undefined>Undefined, False);
Verify(Undefined>1, False);
Verify(Undefined >= -4, False);
Verify(Undefined <= -4, False);
// Jonathan's bug report
BuiltinPrecisionSet(10);
NumericEqual(N(Cos(Pi*.5),BuiltinPrecisionGet()), 0,BuiltinPrecisionGet());
/* Jitse's bug report, extended with the changes that do not coerce integers to floats automatically
any more (just enter a dot and the number becomes float if that is what is intended).
*/
Verify(CForm(4), "4");
Verify(CForm(4.), "4.");
Verify(CForm(0), "0");
Verify(CForm(0.), "0.");
// Discovered that Floor didn't handle new exponent notation
Verify(Floor(1001.1e-1),100);
Verify(Floor(10.01e1),100);
Verify(Floor(100.1),100);
// Bugs discovered by Jonathan:
Verify(Undefined*0,Undefined);
// Actually, the following Groebner test is just to check that the program doesn't crash on this,
// more than on the exact result (which is hopefully correct also ;-) )
Verify(Groebner({x*(y-1),y*(x-1)}),{x*y-x,x*y-y,y-x,y^2-y});
// Reported by Yannick Versley
Verify((Integrate(x,a,b)Cos(x)^2) - ((b-Sin((-2)*b)/2)/2-(a-Sin((-2)*a)/2)/2),0);
Verify(Differentiate(t) Integrate(x,a,b) f(x,t),Integrate(x,a,b)Deriv(t)f(x,t));
// This was returning FWatom(Sin(x))
Verify( Factor(Sin(x)), Factor(Sin(x)) );
// should return unevaled
Verify( BesselJ(0,x), BesselJ(0,x) );
// FunctionToList and ListToFunction coredumped when their arguments were invalid
Verify(FunctionToList(Cos(x)),{Cos,x});
Verify(ListToFunction({Cos,x}),Cos(x));
[
Local(exception);
exception := False;
ExceptionCatch(FunctionToList(1.2), exception := ExceptionGet());
Verify(exception = False, False);
exception := false;
ExceptionCatch(ListToFunction(1.2), exception := ExceptionGet());
Verify(exception = False, False);
];
// Reported by Serge: xml tokenizer not general enough
Verify(XmlExplodeTag("<p/>"), XmlTag("P",{},"OpenClose"));
Verify(XmlExplodeTag("<p / >"), XmlTag("P",{},"OpenClose"));
Verify(ToBase(16,30),"1e");
Verify(FromBase(16,"1e"),30);
// numbers are too small because of wrong precision handling
BuiltinPrecisionSet(30);
Verify(0.00000000000000000005421010862 = 0, False); // 2^(-64)
Verify(0.00000000000000000005421010862 / 1 = 0, False);
Verify(0.00000000000000000005421010862 / 2 = 0, False);
Verify(0.00000000000000000001 = 0, False);
Verify(0.00000000000000000001 / 2 = 0, False);
Verify(0.00000000000000000000000000001 = 0, False);
Verify(0.000000000000000000000000000001 = 0, False);
Verify((0.0000000000000000000000000000000000000001 = 0), False);
// I added another one, the code will currently say that 0.0000...00001=0 is True
// for a sufficient amount of zeroes, regardless of precision. Either that is good
// or that is bad, but the above tests didn't go far enough. This one makes it
// more explicit, unless we move over to a 128-bits system ;-)
Verify((0.0000000000000000000000000000000000000000000000001 = 0), False);
// Problem with FloatIsInt and gmp
Verify(FloatIsInt(3.1415926535e9), False);
Verify(FloatIsInt(3.1415926535e10), True);
Verify(FloatIsInt(3.1415926535e20), True);
Verify(FloatIsInt(0.3e20), True);
/* Regression on bug reports from docs/bugs.txt */
/* Bug #1 */
/* Can't test: 'Limit(x,0)Differentiate(x,2)Sin(x)/x' never terminates */
/* Bug #2 */
KnownFailure((Limit(x,Infinity) x^n/Ln(x)) = Infinity);
KnownFailure((Limit(x,0,Right) x^(Ln(a)/(1+Ln(x)))) = a);
Verify((Limit(x,0) (x+1)^(Ln(a)/x)), a);
/* Note paren's around bodied operators like Limit, D, Integrate;
otherwise it's parsed as Limit (... = ...) */
/* Bug #3 */
KnownFailure(Gcd(10,3.3) != 3.3 And Gcd(10,3.3) != 1);
/* I don't know what the answer should be, but buth 1 and 3.3 seem */
/* certainly wrong. */
Verify(Gcd(-10, 0), 10);
Verify(Gcd(0, -10), 10);
/* Bug #4 */
/* How can we test for this? */
/* Bug says: at startup, 2^Infinity does not simplify to Infinity */
/* Bug #5 */
/* How can we test for this? */
/* Bug says: Limit(n,Infinity) Sqrt(n+1)-Sqrt(n) floods stack */
/* but 'MaxEvalDepth reached' exits Yacas, even inside ExceptionCatch */
/* Bug #6 */
KnownFailure((Differentiate(z) Conjugate(z)) = Undefined);
/* Bug #7 */
Verify(Im(3+I*Infinity), Infinity); /* resolved */
Verify(Im(3+I*Undefined), Undefined);
/* Bug #9 */
Verify((Integrate(x,-1,1) 1/x), 0); /* or maybe Undefined? */
Verify((Integrate(x,-1,1) 1/x^2), Infinity);
/* Bug #10 */
Verify(Simplify(x^(-2)/(1-x)^3) != 0);
/* I don't know what we want to return, but '0' is definitely wrong! */
/* Bug #11 */
Verify(ArcCos(Cos(beta)) != beta);
/* Bug #12 */
KnownFailure((Limit(n, Infinity) n^5/2^n) = 0);
/* Bug #13 */
/* Cannot test; TrigSimpCombine(x^500) floods stack */
/* Bug #14 */
Verify((Limit(x,Infinity) Zeta(x)), 1);
// Actually, I changed the Factorial(x) to (x!)
Verify((Limit(x,Infinity) (x!)), Infinity);
/* Bug #15 */
Verify(PowerN(0,0.55), 0);
// LogN(-1) locks up in gmpnumbers.cpp, will be fixed in scripts
//FIXME this test should be uncommented eventually
// Verify(ExceptionCatch(PowerN(-1,-0.5), error), error);
/* Bug #16 */
/* Can't test, bug in build system */
/* Bug #17 */
Verify(Assoc(x-1, Factors(x^6-1))[2], 1);
/* Bug #18 */
//Changed, see next line TestMathPiper(Integrate(x) x^(1/2), 2/3*x^(3/2));
TestMathPiper(Integrate(x) x^(1/2), (2/3)*Sqrt(x)^(3));
Verify(a[2]*Sin(x)/:{Sin(_x) <- sin(x)},a[2]*sin(x));
// There was a bug, reported by Sebastian Ferraro, which caused the determinant
// to return "Undefined" when one of the elements of the diagonal of a matrix
// was zero. This was due to the numeric determinant algorithm applying
// Gaussian elimination, but taking the elements on the diagonal as pivot points.
Verify(IsZero(Determinant( {{1,-1,0,0},{0,0,-1,1},{1,0,0,1},{0,1,1,0}} )),True);
// The following failed when numerics changed so that 0e-1 was not matched to 0 any more in
// a transformation rule defining the less than operator.
Verify(ExpNum(0),1);
NumericEqual(ExpNum(0e-1),1,BuiltinPrecisionGet());
Verify(500 < 0e-1,False);
// version 1.0.56: Due to MathBitCount returning negative values sometimes, functions depending on
// proper functioning failed. MathSqrtFloat failed for instance on N(1/2). It did give the right
// result for 0.5.
NumericEqual(N(Sqrt(500000e-6),20),N(Sqrt(0.0000005e6),20),20);
NumericEqual(N(Sqrt(0.5),20),N(Sqrt(N(1/2)),20),20);
// With the changes in numerics, RoundTo seems to have been broken. This line demonstrates the problem.
// The last digit is suddenly rounded down (it used to be 4, correctly, and then gets rounded down to 3).
KnownFailure(RoundTo(RoundTo(N(Cot(2),9),9),N(Cot(2),9),9)=0);
// LogN used to hang on *all* input
Verify(LogN(2)!=0,True);
// Bug that was introduced when going to the new numeric setup where
// numbers were not converted to strings any more. In the situation
// -n*10^-m where n and m positive integers, the number got truncated
// prematurely, resulting in a wrong rounding.
[
Local(n,m,nkeep,lcl);
n:=7300 + 12*I;
m:=2700 + 100*I;
nkeep:=n;
n:=m;
m:=nkeep - m*Round(nkeep/m);
lcl:=Re(N(n/m))+0.5;
Verify(FloorN(lcl),-3);
];
/* Here follow some tests for MathBitCount. These were written while creating
the Java version, fixing BitCount in the process.
*/
Verify(MathBitCount(3),2);
Verify(MathBitCount(3.0),2);
Verify(MathBitCount(4),3);
Verify(MathBitCount(4.0),3);
Verify(MathBitCount(0),0);
Verify(MathBitCount(0.0),0);
Verify(MathBitCount(0.5),0);
Verify(MathBitCount(0.25),-1);
Verify(MathBitCount(0.125),-2);
Verify(MathBitCount(0.0125),-6);
Verify(MathBitCount(-3),2);
Verify(MathBitCount(-3.0),2);
Verify(MathBitCount(-4),3);
Verify(MathBitCount(-4.0),3);
Verify(MathBitCount(-0),0);
Verify(MathBitCount(-0.0),0);
Verify(MathBitCount(-0.5),0);
Verify(MathBitCount(-0.25),-1);
Verify(MathBitCount(-0.125),-2);
Verify(MathBitCount(-0.0125),-6);
// This one ended in an infinite loop because 1 is an even function, and the indefinite integrator
// then kept on calling itself because the left and right boundaries were equal to zero.
Verify(Integrate(x,0,0)1,0);
// This code verifies that if integrating over a zero domain, the result
// is zero.
Verify(Integrate(x,1,1)Sin(Exp(x^2)),0);
/* Reverse and FlatCopy (and some friends) would segfault in the past if passed a string as argument.
* I am not opposed to overloading these functions to also work on strings per se, but for now just
* check that they return an error in stead of segfaulting.
*/
Verify(ExceptionCatch(Reverse("abc"),"Exception"), "Exception");
Verify(ExceptionCatch(FlatCopy("abc"),"Exception"), "Exception");
// Make sure Mod works threaded
Verify(Modulo(2,Infinity),2);
Verify(Modulo({2,1},{2,2}),{0,1});
Verify(Modulo({5,1},4),{1,1});
/* In MatchLinear and MatchPureSquare, the matched coefficients were
* assigned to global variables that were not protected with LocalSymbols.
*/
[
Local(a,b,A);
a:=mystr;
A:=mystr;
/* The real test here is that no error is generated due to the
* fact that variables a or A are set.
*/
Verify(Simplify((Integrate(x,a,b)Sin(x))-Cos(a)+Cos(b)),0);
];
// Factoring 2*x^2 used to generate an error
Verify(Factor(2*x^2),2*x^2);
/* Bug report from Magnus Petursson regarding determinants of matrices that have symbolic entries */
Verify(CanBeUni(Determinant({{a,b},{c,d}})),True);
/* Bug report from Michael Borcherds. The brackets were missing. */
Verify(TeXForm(Hold(2*x*(-2))), "$2 \\cdot x \\cdot ( - 2) $");
/* Bug reported by Adrian Vontobel. */
[
Local(A1,A2);
A1:=Pi*20^2; // 400*Pi
A2:=Pi*18^2; // 324*Pi
Verify(Minimum(A1,A2), 324*Pi);
Verify(Maximum(A1,A2), 400*Pi);
];
/* One place where we forgot to change Sum to Add */
TestMathPiper(Diverge({x*y,x*y,x*y},{x,y,z}),x+y);
/* Bug reported by Adrian Vontobel: comparison operators should coerce
* to a real value as much as possible before trying the comparison.
*/
[
Local(F);
F:=0.2*Pi;
Verify(F>0.5, True);
Verify(F>0.7, False);
Verify(F<0.7, True);
Verify(F<0.6, False);
];
/* Bug reported by Michael Borcherds: Simplify(((4*x)-2.25)/2)
returned some expression with three calls to Gcd, which was technically
correct, but not the intended simplification.
*/
Verify(IsZero(Simplify(Simplify(((4*x)-2.25)/2)-(2*x-2.25/2))),True);
/* Bug reported by Adrian Vontobel: when assigning an expression to a variable,
* it did not get re-evaluated in the calling environment when passing it in to Newton.
* The resulting value was "Undefined", instead of the expected 1.5 .
*/
NumericEqual([ Local(expr); expr := 1800*x/1.5 - 1800; Newton(expr, x,2,0.001); ],1.5,3);
|