File: sturm.mpt

package info (click to toggle)
mathpiper 0.81f%2Bsvn4469%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: buster, jessie, jessie-kfreebsd, stretch
  • size: 36,552 kB
  • ctags: 8,348
  • sloc: java: 57,479; lisp: 13,721; objc: 1,300; xml: 988; makefile: 114; awk: 95; sh: 38
file content (137 lines) | stat: -rw-r--r-- 3,219 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
 TESTS:
 - random-test code for roots, be generating random roots and
   multiplicities.
 - find an example where bisection is needed, or better, a group
   of examples where bisection is needed, for tests
 - GarbageCollect in TryRandomPoly causes some corruption, as is
   visible when turning show file/line on.
*/

BuiltinPrecisionSet(5);

VerifyZero(x) := (Abs(x)<10^ -BuiltinPrecisionGet());


sl() := []; //Echo(CurrentFile(),CurrentLine());
TryRandomPoly(deg,coefmin,coefmax):=
[
  //GarbageCollect();
  Local(coefs,p,roots,px);
  coefs:=Table(FloorN(coefmin+Random()*(coefmax-coefmin)),i,1,deg+1,1);
  p:=Add(coefs*x^(0 .. deg));
  p:=Rationalize(p);
//Echo("Test polynom ",p);
  Verify(Maximum(Abs(coefs))<=MaximumBound(p));
  Verify(Minimum(Abs(coefs))>MinimumBound(p));
//Echo("bounds ",BoundRealRoots(p));
  roots:=FindRealRoots(p);
//Echo("roots ",roots);
  px := (p Where x==x);
  Verify(Dot(px, px) < 0.01);
];
TryRandomRoots(deg,coefmin,coefmax):=
[
  //GarbageCollect();
  Local(coefs,p,roots,px,mult);
  coefs:=RemoveDuplicates(Table(FloorN(coefmin+Random()*(coefmax-coefmin)),i,1,deg+1,1));
  deg:=Length(coefs)-1;
  mult:=1+Abs(Table(FloorN(coefmin+Random()*(coefmax-coefmin)),i,1,deg+1,1));
  p:=Product((x-coefs)^mult);
  p:=Rationalize(p);
Echo("Test polynom ",p);
Echo("minimum ",MinimumBound(p));
Echo("maximum ",MaximumBound(p));
Echo("bounds ",BoundRealRoots(p));
  roots:=FindRealRoots(p);
Echo("roots ",roots);
  Verify(Length(roots) = Length(coefs));
  Verify(Length(RemoveDuplicates(roots)) = Length(coefs));
  px := (p Where x==x);
  Verify(Dot(px, px) < 0.01);
];

sl();

[
  Local(p);
  p := FindRealRoots((x+2)^9*(x-4)^5*(x-1)^4)-{-2.,1.,4.};
  Verify(VerifyZero(Dot(p,p)),True);
];
sl();

/*TODO 
TryRandomRoots(3,-10,10);  sl();
TryRandomRoots(3,-10,10);  sl();
TryRandomRoots(5,5,1000);  sl();
TryRandomRoots(5,5,1000);  sl();
*/

// Bounds on coefficients
Verify(MinimumBound(4),-Infinity); sl();
Verify(MaximumBound(4),Infinity);  sl();

// RealRootsCount
Verify(RealRootsCount(x^2-1),2);     sl();
Verify(RealRootsCount(x^2+1),0);     sl();

[
  Local(p);
  p:=Difference(FindRealRoots(Expand((x*(x-10)^3*(x+2)^2))),{0,-2.,10.});
  Verify(VerifyZero(Dot(p, p)),True);
];
Verify(FindRealRoots((x^2+20)*(x^2+10)),{});
Verify(RealRootsCount((x^2+20)*(x^2+10)),0);

sl();

// Simple test on Squarefree
TestMathPiper(Monic(SquareFree((x-1)^2*(x-3)^3)),Monic((x-1)*(x-3)));

sl();

// Check the rare case where the bounds finder lands on
// exactly a root
[
  Local(p);
  p:=FindRealRoots((x+4)*(x-6),1,7)-{-4.,6.};
  Verify(VerifyZero(Dot(p, p)),True);
];



sl();
[
  Local(p);

  p:=Expand((x-3.1)*(x+6.23));
  p:=FindRealRoots(p)-{-6.23,3.1};
  Verify(VerifyZero(Dot(p, p)),True);
];

sl();
Verify(BuiltinPrecisionGet(),5);
[ 
  Local(res);
  res:=FindRealRoots(Expand((x-3.1)*(x+6.23)))-{-6.23,3.1};
  Verify(VerifyZero(Dot(res, res)) , True);
];
sl();

TryRandomPoly(5,5,1000);  sl();
sl();
TryRandomPoly(5,5,1000);  sl();
sl();
TryRandomPoly(5,5,1000);  sl();
sl();
TryRandomPoly(5,5,1000);  sl();
sl();
TryRandomPoly(5,5,1000);  sl();
sl();
TryRandomPoly(5,5,1000);  sl();
sl();


//RandomPoly(_var,_degree,_coefmin,_coefmax)
//RandomIntegerList(_count,_coefmin,_coefmax)