File: geogebra_interaction.mpw

package info (click to toggle)
mathpiper 0.81f%2Bsvn4469%2Bdfsg3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 36,576 kB
  • sloc: java: 57,479; lisp: 13,721; objc: 1,300; xml: 988; makefile: 114; awk: 95; sh: 38
file content (117 lines) | stat: -rw-r--r-- 1,912 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

%*
Create 3 points A, B and C in GeoGebra.
*/


%mathpiper,title=""

/*
The GeoGebra() function is used to tell the system which GeoGebra objects
should be inserted into the MathPiper environment.  The names of the
objects are sent to the GeoGebra() function in a comma separated list.
*/
GeoGebra()["updateObjects"] := "A,B,C,f,g";


/*
GeoGebraPoint() is an experimental function which directly places points
into GeoGebra.  The first parameter is the name of the point, the second
parameter is its x coordinate, and the third parameter is the name of
its y coordinate.
*/
GeoGebraPoint("A",1,2);

GeoGebraPoint("B",2,2);

GeoGebraPoint("C",1,1);

%/mathpiper

    %output,preserve="false"
      Result: java.lang.Boolean
.   %/output


%mathpiper, output="latex"
ax := A["coords"]["x"];
ay := A["coords"]["y"];
bx := B["coords"]["x"];
by := B["coords"]["y"];
cx := C["coords"]["x"];
cy := C["coords"]["y"];

%/mathpiper

    %hoteqn,preserve="false"
      Result: 1.0
.   %/hoteqn



%mathpiper, output="geogebra"
bez1(a,b,r) := a*(1-r)+b*r;
bez2(a,b,c,r) := bez1(a,b,r)*(1-r) + bez1(b,c,r)*r;
f(x) := Expand(bez2(ax,bx,cx,x));
f(x);
%/mathpiper

    %geogebra,preserve="false"
      Result: 2.0*x-2.0*x^2+1
.   %/geogebra

        %output,preserve="false"
          GeoGebra updated.
.       %/output







%mathpiper, output="geogebra"
g(x) := Expand(bez2(ay,by,cy,x));
g(x);
%/mathpiper

    %geogebra,preserve="false"
      Result: 2.0-x^2
.   %/geogebra

        %output,preserve="false"
          GeoGebra updated.
.       %/output






%geogebra, clear="false"
curve : curve[f(t),g(t),t,0,1]
%/geogebra

    %output,preserve="false"
      GeoGebra updated.
.   %/output



%mathpiper, output="latex"
{f(x), g(x)};
%/mathpiper

    %hoteqn,preserve="false"
      Result: \left(2x-2x^{2}+1,2-x^{2}\right)
.   %/hoteqn

        %output,preserve="false"
          HotEqn updated.
.       %/output