1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
function cleanfigure(varargin)
% CLEANFIGURE() removes the unnecessary objects from your MATLAB plot
% to give you a better experience with matlab2tikz.
% CLEANFIGURE comes with several options that can be combined at will.
%
% CLEANFIGURE('handle',HANDLE,...) explicitly specifies the
% handle of the figure that is to be stored. (default: gcf)
%
% CLEANFIGURE('minimumPointsDistance',DOUBLE,...) explicitly specified the
% minimum distance between two points. (default: 1.0e-10)
%
% Example
% x = -pi:pi/1000:pi;
% y = tan(sin(x)) - sin(tan(x));
% plot(x,y,'--rs');
% cleanfigure();
%
% Copyright (c) 2013--2014, Nico Schlömer <nico.schloemer@gmail.com>
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
% Treat hidden handles, too.
shh = get(0, 'ShowHiddenHandles');
set(0, 'ShowHiddenHandles', 'on');
% Keep track of the current axes.
meta.gca = [];
% Set up command line options.
m2t.cmdOpts = matlab2tikzInputParser;
m2t.cmdOpts = m2t.cmdOpts.addParamValue(m2t.cmdOpts, 'minimumPointsDistance', 1.0e-10, @isnumeric);
m2t.cmdOpts = m2t.cmdOpts.addParamValue(m2t.cmdOpts, 'handle', gcf, @isnumeric);
% Finally parse all the elements.
m2t.cmdOpts = m2t.cmdOpts.parse(m2t.cmdOpts, varargin{:});
% Recurse down the tree of plot objects and clean up the leaves.
for h = m2t.cmdOpts.Results.handle(:)'
recursiveCleanup(meta, h, m2t.cmdOpts.Results.minimumPointsDistance, 0);
end
% Reset to initial state.
set(0, 'ShowHiddenHandles', shh);
return;
end
% =========================================================================
function indent = recursiveCleanup(meta, h, minimumPointsDistance, indent)
type = get(h, 'Type');
%display(sprintf([repmat(' ',1,indent), type, '->']))
% Don't try to be smart about quiver groups.
% NOTE:
% A better way to write `strcmp(get(h,...))` would be to use
% isa(handle(h), 'specgraph.quivergroup').
% The handle() function isn't supported by Octave, though, so let's stick
% with strcmp().
if strcmp(get(h, 'Type'), 'specgraph.quivergroup')
%if strcmp(class(handle(h)), 'specgraph.quivergroup')
return;
end
% Update the current axes.
if strcmp(get(h, 'Type'), 'axes')
meta.gca = h;
end
children = get(h, 'Children');
if ~isempty(children)
for child = children(:)'
indent = indent + 4;
indent = recursiveCleanup(meta, child, minimumPointsDistance, indent);
indent = indent - 4;
end
else
% We're in a leaf, so apply all the fancy simplications.
%% Skip invisible objects.
%if ~strcmp(get(h, 'Visible'), 'on')
% display(sprintf([repmat(' ',1,indent), ' invisible']))
% return;
%end
%display(sprintf([repmat(' ',1,indent), ' handle this']))
if strcmp(type, 'line')
pruneOutsideBox(meta, h);
% Move some points closer to the box to avoid TeX:DimensionTooLarge
% errors. This may involve inserting extra points.
movePointsCloser(meta, h);
% Don't be too precise.
coarsenLine(meta, h, minimumPointsDistance);
elseif strcmp(type, 'text')
% Check if text is inside bounds by checking if the Extent rectangle
% and the axes box overlap.
xlim = get(meta.gca, 'XLim');
ylim = get(meta.gca, 'YLim');
extent = get(h, 'Extent');
extent(3:4) = extent(1:2) + extent(3:4);
overlap = xlim(1) < extent(3) && xlim(2) > extent(1) ...
&& ylim(1) < extent(4) && ylim(2) > extent(2);
if ~overlap
% Artificially disable visibility. m2t will check and skip.
set(h, 'Visible', 'off');
end
end
end
return;
end
% =========================================================================
function pruneOutsideBox(meta, handle)
% Some sections of the line may sit outside of the visible box.
% Cut those off.
xData = get(handle, 'XData');
yData = get(handle, 'YData');
zData = get(handle, 'ZData');
if isempty(zData)
data = [xData(:), yData(:)];
else
data = [xData(:), yData(:), zData(:)];
end
if isempty(data)
return;
end
%hasLines = ~strcmp(lineStyle,'none') && lineWidth>0.0;
%hasMarkers = ~strcmp(marker,'none');
hasLines = true;
hasMarkers = true;
xLim = get(meta.gca, 'XLim');
yLim = get(meta.gca, 'YLim');
tol = 1.0e-10;
relaxedXLim = xLim + [-tol, tol];
relaxedYLim = yLim + [-tol, tol];
numPoints = size(data, 1);
% Get which points are inside a (slightly larger) box.
dataIsInBox = isInBox(data(:,1:2), ...
relaxedXLim, relaxedYLim);
% By default, don't plot any points.
shouldPlot = false(numPoints, 1);
if hasMarkers
shouldPlot = shouldPlot | dataIsInBox;
end
if hasLines
% Check if the connecting line is in the box.
segvis = segmentVisible(data(:,1:2), ...
dataIsInBox, xLim, yLim);
% Plot points which are next to an edge which is in the box.
shouldPlot = shouldPlot | [false; segvis] | [segvis; false];
end
if ~all(shouldPlot)
% There are two options here:
% data = data(shouldPlot, :);
% i.e., simply removing the data that isn't supposed to be plotted.
% For line plots, this has the disadvantage that the line between two
% 'loose' ends may now appear in the figure.
% To avoid this, add a row of NaNs wherever a block of actual data is
% removed.
chunkIndices = [];
k = 1;
while k <= numPoints
% fast forward to shouldPlot==True
while k<=numPoints && ~shouldPlot(k)
k = k+1;
end
kStart = k;
% fast forward to shouldPlot==False
while k<=numPoints && shouldPlot(k)
k = k+1;
end
kEnd = k-1;
if kStart <= kEnd
chunkIndices = [chunkIndices; ...
[kStart, kEnd]];
end
end
% Create masked data with NaN padding.
% Make sure that there are no NaNs at the beginning of the data since
% this would be interpreted as column names by Pgfplots.
if size(chunkIndices, 1) > 0
ci = chunkIndices(1,:);
newData = data(ci(1):ci(2), :);
n = size(data, 2);
for ci = chunkIndices(2:end,:)'
newData = [newData; ...
NaN(1, n); ...
data(ci(1):ci(2), :)];
end
data = newData;
end
end
% Override with the new data.
set(handle, 'XData', data(:, 1));
set(handle, 'YData', data(:, 2));
if ~isempty(zData)
set(handle, 'ZData', data(:, 3));
end
return;
end
% =========================================================================
function out = segmentVisible(data, dataIsInBox, xLim, yLim)
% Given a bounding box {x,y}Lim, loop through all pairs of subsequent nodes
% in p and determine whether the line between the pair crosses the box.
n = size(data, 1);
out = false(n-1, 1);
for k = 1:n-1
out(k) = (dataIsInBox(k) && all(isfinite(data(k+1,:)))) ... % one of the neighbors is inside the box
|| (dataIsInBox(k+1) && all(isfinite(data(k,:)))) ... % and the other is finite
|| segmentsIntersect(data(k,:), data(k+1,:), ...
[xLim(1);yLim(1)], [xLim(1);yLim(2)]) ... % left border
|| segmentsIntersect(data(k,:), data(k+1,:), ...
[xLim(1);yLim(1)], [xLim(2);yLim(1)]) ... % bottom border
|| segmentsIntersect(data(k,:), data(k+1,:), ...
[xLim(2);yLim(1)], [xLim(2);yLim(2)]) ... % right border
|| segmentsIntersect(data(k,:), data(k+1,:), ...
[xLim(1);yLim(2)], [xLim(2);yLim(2)]); % top border
end
end
% =========================================================================
function out = segmentsIntersect(X1, X2, X3, X4)
% Checks whether the segments X1--X2 and X3--X4 intersect.
lambda = crossLines(X1, X2, X3, X4);
out = all(lambda > 0.0) && all(lambda < 1.0);
return
end
% =========================================================================
function coarsenLine(meta, handle, minimumPointsDistance)
% Reduce the number of data points in the line handle.
% Given a minimum distance at which two nodes are considered different,
% this can help with plots that contain a large amount of data points not
% all of which need to be plotted.
%
if ( abs(minimumPointsDistance) < 1.0e-15 )
% bail out early
return
end
% Extract the data from the current line handle.
xData = get(handle, 'XData');
yData = get(handle, 'YData');
zData = get(handle, 'ZData');
if ~isempty(zData)
% Don't do funny stuff when zData is present.
return;
end
data = [xData(:), yData(:)];
if isempty(data)
return;
end
% Generate a mask which is true for the first point, and all
% subsequent points which have a greater norm2-distance from
% the previous point than 'threshold'.
n = size(data, 1);
% Get info about log scaling.
isXlog = strcmp(get(meta.gca, 'XScale'), 'log');
isYlog = strcmp(get(meta.gca, 'YScale'), 'log');
mask = false(n, 1);
XRef = data(1,:);
mask(1) = true;
for kk = 2:n
% Compute the visible distance of those points,
% incorporating possible log-scaling of the axes.
visDiff = XRef - data(kk,:);
if isXlog
% visDiff(1) = log10(XRef(1)) - log10(data(kk,1));
visDiff(1) = log10(visDiff(1));
end
if isYlog
visDiff(2) = log10(visDiff(2));
end
% Check if it's larger than the threshold and
% update the reference point in that case.
if norm(visDiff) > minimumPointsDistance
XRef = data(kk,:);
mask(kk) = true;
end
end
mask(end) = true;
% Make sure to keep NaNs.
mask = mask | any(isnan(data)')';
% Set the new (masked) data.
set(handle, 'XData', data(mask, 1));
set(handle, 'YData', data(mask, 2));
return;
end
% =========================================================================
function movePointsCloser(meta, handle)
% Move all points outside a box much larger than the visible one
% to the boundary of that box and make sure that lines in the visible
% box are preserved. This typically involves replacing one point by
% two new ones and a NaN.
% Extract the data from the current line handle.
xData = get(handle, 'XData');
yData = get(handle, 'YData');
zData = get(handle, 'ZData');
if ~isempty(zData) && any(zData(1)~=zData)
% Don't do funny stuff with varying zData.
return;
end
data = [xData(:), yData(:)];
xlim = get(meta.gca, 'XLim');
ylim = get(meta.gca, 'YLim');
xWidth = xlim(2) - xlim(1);
yWidth = ylim(2) - ylim(1);
% Don't choose the larger box too large to make sure that the values inside
% it can still be treated by TeX.
extendFactor = 0.1;
largeXLim = xlim + extendFactor * [-xWidth, xWidth];
largeYLim = ylim + extendFactor * [-yWidth, yWidth];
% Get which points are in an extended box (the limits of which
% don't exceed TeX's memory).
dataIsInLargeBox = isInBox(data(:,1:2), ...
largeXLim, largeYLim);
% Count the NaNs as being inside the box.
dataIsInLargeBox = dataIsInLargeBox | any(isnan(data)')';
% Loop through all points which are to be included in the plot yet do not
% fit into the extended box, and gather the points by which they are to be
% replaced.
replaceIndices = find(~dataIsInLargeBox)';
m = length(replaceIndices);
r = cell(m, 1);
for k = 1:m
i = replaceIndices(k);
r{k} = [];
if i > 1 && all(isfinite(data(i-1,:)))
newPoint = moveToBox(data(i,:), data(i-1,:), largeXLim, largeYLim);
% Don't bother if the point is inf:
% There's no intersection with the large box, so even the
% connection between the two after they have been moved
% won't be probably be visible.
if all(isfinite(newPoint))
r{k} = [r{k}; newPoint];
end
end
if i < size(data,1) && all(isfinite(data(i+1,:)))
newPoint = moveToBox(data(i,:), data(i+1,:), largeXLim, largeYLim);
% Don't bother if the point is inf:
% There's no intersection with the large box, so even the
% connection between the two after they have been moved
% won't be probably be visible.
if all(isfinite(newPoint))
r{k} = [r{k}; newPoint];
end
end
end
% Insert all r{k}{:} at replaceIndices[k].
dataNew = [];
lastReplIndex = 0;
lastEntryIsReplacement = false;
for k = 1:m
% Make sure that two subsequent moved points are separated by a NaN entry.
% This is to make sure that there is no visible line between two moved
% points that wasn't there before.
d = data(lastReplIndex+1:replaceIndices(k)-1,:);
if size(r{k}, 1) == 2
% Two replacement entries -- pad them with a NaN.
rep = [r{k}(1, :); ...
NaN(1, size(r{k}, 2)); ...
r{k}(2, :)];
else
rep = r{k};
end
if isempty(d) && ~isempty(rep) && lastEntryIsReplacement
% The last entry was a replacment, and the first one now is.
% Prepend a NaN.
rep = [NaN(1, size(r{k}, 2)); ...
rep];
end
% Add the data.
if ~isempty(d)
dataNew = [dataNew; ...
d];
lastEntryIsReplacement = false;
end
if ~isempty(rep)
dataNew = [dataNew; ...
rep];
lastEntryIsReplacement = true;
end
lastReplIndex = replaceIndices(k);
end
dataNew = [dataNew; ...
data(lastReplIndex+1:end,:)];
% Set the new (masked) data.
set(handle, 'XData', dataNew(:,1));
set(handle, 'YData', dataNew(:,2));
if ~isempty(zData)
% As per precondition, all zData entries are equal.
zDataNew = zData(1) * ones(size(dataNew,1), 1);
set(handle, 'zData', zDataNew);
end
return;
end
% =========================================================================
function xNew = moveToBox(x, xRef, xlim, ylim)
% Takes a box defined by xlim, ylim, one point x and a reference point
% xRef.
% Returns the point xNew that sits on the line segment between x and xRef
% *and* on the box. If several such points exist, take the closest one
% to x.
% Find out with which border the line x---xRef intersects, and determine
% the smallest parameter alpha such that x + alpha*(xRef-x)
% sits on the boundary.
minAlpha = inf;
% left boundary:
lambda = crossLines(x, xRef, [xlim(1);ylim(1)], [xlim(1);ylim(2)]);
if 0.0 < lambda(2) && lambda(2) < 1.0 && abs(minAlpha) > abs(lambda(1))
minAlpha = lambda(1);
end
% bottom boundary:
lambda = crossLines(x, xRef, [xlim(1);ylim(1)], [xlim(2);ylim(1)]);
if 0.0 < lambda(2) && lambda(2) < 1.0 && abs(minAlpha) > abs(lambda(1))
minAlpha = lambda(1);
end
% right boundary:
lambda = crossLines(x, xRef, [xlim(2);ylim(1)], [xlim(2);ylim(2)]);
if 0.0 < lambda(2) && lambda(2) < 1.0 && abs(minAlpha) > abs(lambda(1))
minAlpha = lambda(1);
end
% top boundary:
lambda = crossLines(x, xRef, [xlim(1);ylim(2)], [xlim(2);ylim(2)]);
if 0.0 < lambda(2) && lambda(2) < 1.0 && abs(minAlpha) > abs(lambda(1))
minAlpha = lambda(1);
end
% create the new point
xNew = x + minAlpha*(xRef-x);
end
% =========================================================================
function out = isInBox(data, xLim, yLim)
out = data(:,1) > xLim(1) & data(:,1) < xLim(2) ...
& data(:,2) > yLim(1) & data(:,2) < yLim(2);
end
% =========================================================================
function lambda = crossLines(X1, X2, X3, X4)
% Given four points X_k=(x_k,y_k), k\in{1,2,3,4}, and the two lines defined
% by those,
%
% L1(lambda) = X1 + lambda (X2 - X1)
% L2(lambda) = X3 + lambda (X4 - X3)
%
% returns the lambda for which they intersect (and Inf if they are parallel).
% Technically, one needs to solve the 2x2 equation system
%
% x1 + lambda1 (x2-x1) = x3 + lambda2 (x4-x3)
% y1 + lambda1 (y2-y1) = y3 + lambda2 (y4-y3)
%
% for lambda and mu.
rhs = X3(:) - X1(:);
% Divide by det even if it's 0: Infs are returned.
% A = [X2-X1, -(X4-X3)];
detA = -(X2(1)-X1(1))*(X4(2)-X3(2)) + (X2(2)-X1(2))*(X4(1)-X3(1));
invA = [-(X4(2)-X3(2)), X4(1)-X3(1);...
-(X2(2)-X1(2)), X2(1)-X1(1)] / detA;
lambda = invA * rhs;
end
% =========================================================================
|