1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
function [ report ] = codeReport( varargin )
%CODEREPORT Builds a report of the code health
%
% This function generates a Markdown report on the code health. At the moment
% this is limited to the McCabe (cyclomatic) complexity of a function and its
% subfunctions.
%
% This makes use of |checkcode| in MATLAB.
%
% Usage:
%
% CODEREPORT('function', functionName) to determine which function is
% analyzed. (default: matlab2tikz)
%
% CODEREPORT('complexityThreshold', integer ) to set above which complexity, a
% function is added to the report (default: 10)
%
% CODEREPORT('stream', stream) to set to which stream/file to output the report
% (default: 1, i.e. stdout). The stream is used only when no output argument
% for `codeReport` is specified!.
%
% See also: checkcode, mlint
SM = StreamMaker();
%% input options
ipp = m2tInputParser();
ipp = ipp.addParamValue(ipp, 'function', 'matlab2tikz', @ischar);
ipp = ipp.addParamValue(ipp, 'complexityThreshold', 10, @isnumeric);
ipp = ipp.addParamValue(ipp, 'stream', 1, SM.isStream);
ipp = ipp.parse(ipp, varargin{:});
stream = SM.make(ipp.Results.stream, 'w');
%% generate report data
data = checkcode(ipp.Results.function,'-cyc','-struct');
[complexityAll, mlintMessages] = splitCycloComplexity(data);
%% analyze cyclomatic complexity
categorizeComplexity = @(x) categoryOfComplexity(x, ...
ipp.Results.complexityThreshold, ...
ipp.Results.function);
complexityAll = arrayfun(@parseCycloComplexity, complexityAll);
complexityAll = arrayfun(categorizeComplexity, complexityAll);
complexity = filter(complexityAll, @(x) strcmpi(x.category, 'Bad'));
complexity = sortBy(complexity, 'line', 'ascend');
complexity = sortBy(complexity, 'complexity', 'descend');
[complexityStats] = complexityStatistics(complexityAll);
%% analyze other messages
%TODO: handle all mlint messages and/or other metrics of the code
%% format report
dataStr = complexity;
dataStr = arrayfun(@(d) mapField(d, 'function', @markdownInlineCode), dataStr);
if ~isempty(dataStr)
dataStr = addFooterRow(dataStr, 'complexity', @sum, {'line',0, 'function',bold('Total')});
end
dataStr = arrayfun(@(d) mapField(d, 'line', @integerToString), dataStr);
dataStr = arrayfun(@(d) mapField(d, 'complexity', @integerToString), dataStr);
report = makeTable(dataStr, {'function', 'complexity'}, ...
{'Function', 'Complexity'});
%% command line usage
if nargout == 0
if ismember(stream.name, {'stdout','stderr'})
stream.print('%s\n', codelinks(report, ipp.Results.function));
else
stream.print('%s\n', report);
end
figure('name',sprintf('Complexity statistics of %s', ipp.Results.function));
h = statisticsPlot(complexityStats, 'Complexity', 'Number of functions');
for hh = h
plot(hh, [1 1]*ipp.Results.complexityThreshold, ylim(hh), ...
'k--','DisplayName','Threshold');
end
legend(h(1),'show','Location','NorthEast');
clear report
end
end
%% CATEGORIZATION ==============================================================
function [complexity, others] = splitCycloComplexity(list)
% splits codereport into McCabe complexity and others
filter = @(l) ~isempty(strfind(l.message, 'McCabe complexity'));
idxComplexity = arrayfun(filter, list);
complexity = list( idxComplexity);
others = list(~idxComplexity);
end
function [data] = categoryOfComplexity(data, threshold, mainFunc)
% categorizes the complexity as "Good", "Bad" or "Accepted"
TOKEN = '#COMPLEX'; % token to signal allowed complexity
try %#ok
helpStr = help(sprintf('%s>%s', mainFunc, data.function));
if ~isempty(strfind(helpStr, TOKEN))
data.category = 'Accepted';
return;
end
end
if data.complexity > threshold
data.category = 'Bad';
else
data.category = 'Good';
end
end
%% PARSING =====================================================================
function [out] = parseCycloComplexity(in)
% converts McCabe complexity report strings into a better format
out = regexp(in.message, ...
'The McCabe complexity of ''(?<function>[A-Za-z0-9_]+)'' is (?<complexity>[0-9]+).', ...
'names');
out.complexity = str2double(out.complexity);
out.line = in.line;
end
%% DATA PROCESSING =============================================================
function selected = filter(list, filterFunc)
% filters an array according to a binary function
idx = logical(arrayfun(filterFunc, list));
selected = list(idx);
end
function [data] = mapField(data, field, mapping)
data.(field) = mapping(data.(field));
end
function sorted = sortBy(list, fieldName, mode)
% sorts a struct array by a single field
% extra arguments are as for |sort|
values = arrayfun(@(m)m.(fieldName), list);
[dummy, idxSorted] = sort(values(:), 1, mode); %#ok
sorted = list(idxSorted);
end
function [stat] = complexityStatistics(list)
% calculate some basic statistics of the complexities
stat.values = arrayfun(@(c)(c.complexity), list);
stat.binCenter = sort(unique(stat.values));
categoryPerElem = {list.category};
stat.categories = unique(categoryPerElem);
nCategories = numel(stat.categories);
groupedHist = zeros(numel(stat.binCenter), nCategories);
for iCat = 1:nCategories
category = stat.categories{iCat};
idxCat = ismember(categoryPerElem, category);
groupedHist(:,iCat) = hist(stat.values(idxCat), stat.binCenter);
end
stat.histogram = groupedHist;
stat.median = median(stat.values);
end
function [data] = addFooterRow(data, column, func, otherFields)
% adds a footer row to data table based on calculations of a single column
footer = data(end);
for iField = 1:2:numel(otherFields)
field = otherFields{iField};
value = otherFields{iField+1};
footer.(field) = value;
end
footer.(column) = func([data(:).(column)]);
data(end+1) = footer;
end
%% FORMATTING ==================================================================
function str = integerToString(value)
% convert integer to string
str = sprintf('%d',value);
end
function str = markdownInlineCode(str)
% format as inline code for markdown
str = sprintf('`%s`', str);
end
function str = makeTable(data, fields, header)
% make a markdown table from struct array
nData = numel(data);
str = '';
if nData == 0
return; % empty input
end
%TODO: use gfmTable from makeTravisReport instead to do the formatting
% determine column sizes
nFields = numel(fields);
table = cell(nFields, nData);
columnWidth = zeros(1,nFields);
for iField = 1:nFields
field = fields{iField};
table(iField, :) = {data(:).(field)};
columnWidth(iField) = max(cellfun(@numel, table(iField, :)));
end
columnWidth = max(columnWidth, cellfun(@numel, header));
columnWidth = columnWidth + 2; % empty space left and right
columnWidth([1,end]) = columnWidth([1,end]) - 1; % except at the edges
% format table inside cell array
table = [header; table'];
for iField = 1:nFields
FORMAT = ['%' int2str(columnWidth(iField)) 's'];
for jData = 1:size(table, 1)
table{jData, iField} = strjust(sprintf(FORMAT, ...
table{jData, iField}), 'center');
end
end
% insert separator
table = [table(1,:)
arrayfun(@(n) repmat('-',1,n), columnWidth, 'UniformOutput',false)
table(2:end,:)]';
% convert cell array to string
FORMAT = ['%s' repmat('|%s', 1,nFields-1) '\n'];
str = sprintf(FORMAT, table{:});
end
function str = codelinks(str, functionName)
% replaces inline functions with clickable links in MATLAB
str = regexprep(str, '`([A-Za-z0-9_]+)`', ...
['`<a href="matlab:edit ' functionName '>$1">$1</a>`']);
%NOTE: editing function>subfunction will focus on that particular subfunction
% in the editor (this also works for the main function)
end
function str = bold(str)
str = ['**' str '**'];
end
%% PLOTTING ====================================================================
function h = statisticsPlot(stat, xLabel, yLabel)
% plot a histogram and box plot
nCategories = numel(stat.categories);
colors = colorscheme;
h(1) = subplot(5,1,1:4);
hold all;
hb = bar(stat.binCenter, stat.histogram, 'stacked');
for iCat = 1:nCategories
category = stat.categories{iCat};
set(hb(iCat), 'DisplayName', category, 'FaceColor', colors.(category), ...
'LineStyle','none');
end
%xlabel(xLabel);
ylabel(yLabel);
h(2) = subplot(5,1,5);
hold all;
boxplot(stat.values,'orientation','horizontal',...
'boxstyle', 'outline', ...
'symbol', 'o', ...
'colors', colors.All);
xlabel(xLabel);
xlims = [min(stat.binCenter)-1 max(stat.binCenter)+1];
c = 1;
ylims = (ylim(h(2)) - c)/3 + c;
set(h,'XTickMode','manual','XTick',stat.binCenter,'XLim',xlims);
set(h(1),'XTickLabel','');
set(h(2),'YTickLabel','','YLim',ylims);
linkaxes(h, 'x');
end
function colors = colorscheme()
% recognizable color scheme for the categories
colors.All = [ 0 113 188]/255;
colors.Good = [118 171 47]/255;
colors.Bad = [161 19 46]/255;
colors.Accepted = [236 176 31]/255;
end
|