File: colorbar_only.py

package info (click to toggle)
matplotlib 0.98.1-1%2Blenny4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 18,624 kB
  • ctags: 22,599
  • sloc: python: 76,915; cpp: 63,459; ansic: 5,353; makefile: 111; sh: 12
file content (51 lines) | stat: -rw-r--r-- 1,941 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
'''
Make a colorbar as a separate figure.
'''

from matplotlib import pyplot, mpl

# Make a figure and axes with dimensions as desired.
fig = pyplot.figure(figsize=(8,3))
ax1 = fig.add_axes([0.05, 0.65, 0.9, 0.15])
ax2 = fig.add_axes([0.05, 0.25, 0.9, 0.15])

# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
cmap = mpl.cm.cool
norm = mpl.colors.Normalize(vmin=5, vmax=10)

# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar.  There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=cmap,
                                   norm=norm,
                                   orientation='horizontal')
cb1.set_label('Some Units')

# The second example illustrates the use of a ListedColormap, a
# BoundaryNorm, and extended ends to show the "over" and "under"
# value colors.
cmap = mpl.colors.ListedColormap(['r', 'g', 'b', 'c'])
cmap.set_over('0.25')
cmap.set_under('0.75')

# If a ListedColormap is used, the length of the bounds array must be
# one greater than the length of the color list.  The bounds must be
# monotonically increasing.
bounds = [1, 2, 4, 7, 8]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cb2 = mpl.colorbar.ColorbarBase(ax2, cmap=cmap,
                                     norm=norm,
                                     # to use 'extend', you must
                                     # specify two extra boundaries:
                                     boundaries=[0]+bounds+[13],
                                     extend='both',
                                     ticks=bounds, # optional
                                     spacing='proportional',
                                     orientation='horizontal')
cb2.set_label('Discrete intervals, some other units')

pyplot.show()