File: contourf_demo.py

package info (click to toggle)
matplotlib 1.1.1~rc2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 66,076 kB
  • sloc: python: 90,600; cpp: 69,891; objc: 5,231; ansic: 1,723; makefile: 171; sh: 7
file content (87 lines) | stat: -rwxr-xr-x 2,520 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
from pylab import *
origin = 'lower'
#origin = 'upper'

delta = 0.025

x = y = arange(-3.0, 3.01, delta)
X, Y = meshgrid(x, y)
Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = 10 * (Z1 - Z2)

nr, nc = Z.shape

# put NaNs in one corner:
Z[-nr//6:, -nc//6:] = nan
# contourf will convert these to masked


Z = ma.array(Z)
# mask another corner:
Z[:nr//6, :nc//6] = ma.masked

# mask a circle in the middle:
interior = sqrt((X**2) + (Y**2)) < 0.5
Z[interior] = ma.masked


# We are using automatic selection of contour levels;
# this is usually not such a good idea, because they don't
# occur on nice boundaries, but we do it here for purposes
# of illustration.
CS = contourf(X, Y, Z, 10, # [-1, -0.1, 0, 0.1],
                        #alpha=0.5,
                        cmap=cm.bone,
                        origin=origin)

# Note that in the following, we explicitly pass in a subset of
# the contour levels used for the filled contours.  Alternatively,
# We could pass in additional levels to provide extra resolution,
# or leave out the levels kwarg to use all of the original levels.

CS2 = contour(CS, levels=CS.levels[::2],
                        colors = 'r',
                        origin=origin,
                        hold='on')

title('Nonsense (3 masked regions)')
xlabel('word length anomaly')
ylabel('sentence length anomaly')

# Make a colorbar for the ContourSet returned by the contourf call.
cbar = colorbar(CS)
cbar.ax.set_ylabel('verbosity coefficient')
# Add the contour line levels to the colorbar
cbar.add_lines(CS2)

figure()

# Now make a contour plot with the levels specified,
# and with the colormap generated automatically from a list
# of colors.
levels = [-1.5, -1, -0.5, 0, 0.5, 1]
CS3 = contourf(X, Y, Z, levels,
                        colors = ('r', 'g', 'b'),
                        origin=origin,
                        extend='both')
# Our data range extends outside the range of levels; make
# data below the lowest contour level yellow, and above the
# highest level cyan:
CS3.cmap.set_under('yellow')
CS3.cmap.set_over('cyan')

CS4 = contour(X, Y, Z, levels,
                       colors = ('k',),
                       linewidths = (3,),
                       origin = origin)
title('Listed colors (3 masked regions)')
clabel(CS4, fmt = '%2.1f', colors = 'w', fontsize=14)

# Notice that the colorbar command gets all the information it
# needs from the ContourSet object, CS3.
colorbar(CS3)

show()