File: demo_ribbon_box.py

package info (click to toggle)
matplotlib 1.1.1~rc2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 66,076 kB
  • sloc: python: 90,600; cpp: 69,891; objc: 5,231; ansic: 1,723; makefile: 171; sh: 7
file content (141 lines) | stat: -rw-r--r-- 4,293 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage

from matplotlib._png import read_png
import matplotlib.colors
from matplotlib.cbook import get_sample_data

class RibbonBox(object):

    original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",
                                              asfileobj=False))
    cut_location = 70
    b_and_h = original_image[:,:,2]
    color = original_image[:,:,2] - original_image[:,:,0]
    alpha = original_image[:,:,3]
    nx = original_image.shape[1]

    def __init__(self, color):
        rgb = matplotlib.colors.colorConverter.to_rgb(color)

        im = np.empty(self.original_image.shape,
                      self.original_image.dtype)


        im[:,:,:3] = self.b_and_h[:,:,np.newaxis]
        im[:,:,:3] -= self.color[:,:,np.newaxis]*(1.-np.array(rgb))
        im[:,:,3] = self.alpha

        self.im = im


    def get_stretched_image(self, stretch_factor):
        stretch_factor = max(stretch_factor, 1)
        ny, nx, nch = self.im.shape
        ny2 = int(ny*stretch_factor)

        stretched_image = np.empty((ny2, nx, nch),
                                   self.im.dtype)
        cut = self.im[self.cut_location,:,:]
        stretched_image[:,:,:] = cut
        stretched_image[:self.cut_location,:,:] = \
                self.im[:self.cut_location,:,:]
        stretched_image[-(ny-self.cut_location):,:,:] = \
                self.im[-(ny-self.cut_location):,:,:]

        self._cached_im = stretched_image
        return stretched_image



class RibbonBoxImage(BboxImage):
    zorder = 1

    def __init__(self, bbox, color,
                 cmap = None,
                 norm = None,
                 interpolation=None,
                 origin=None,
                 filternorm=1,
                 filterrad=4.0,
                 resample = False,
                 **kwargs
                 ):

        BboxImage.__init__(self, bbox,
                           cmap = cmap,
                           norm = norm,
                           interpolation=interpolation,
                           origin=origin,
                           filternorm=filternorm,
                           filterrad=filterrad,
                           resample = resample,
                           **kwargs
                           )

        self._ribbonbox = RibbonBox(color)
        self._cached_ny = None


    def draw(self, renderer, *args, **kwargs):

        bbox = self.get_window_extent(renderer)
        stretch_factor = bbox.height / bbox.width

        ny = int(stretch_factor*self._ribbonbox.nx)
        if self._cached_ny != ny:
            arr = self._ribbonbox.get_stretched_image(stretch_factor)
            self.set_array(arr)
            self._cached_ny = ny

        BboxImage.draw(self, renderer, *args, **kwargs)


if 1:
    from matplotlib.transforms import Bbox, TransformedBbox
    from matplotlib.ticker import ScalarFormatter

    fig = plt.gcf()
    fig.clf()
    ax = plt.subplot(111)

    years = np.arange(2004, 2009)
    box_colors = [(0.8, 0.2, 0.2),
                  (0.2, 0.8, 0.2),
                  (0.2, 0.2, 0.8),
                  (0.7, 0.5, 0.8),
                  (0.3, 0.8, 0.7),
                  ]
    heights = np.random.random(years.shape) * 7000 + 3000

    fmt = ScalarFormatter(useOffset=False)
    ax.xaxis.set_major_formatter(fmt)

    for year, h, bc in zip(years, heights, box_colors):
        bbox0 = Bbox.from_extents(year-0.4, 0., year+0.4, h)
        bbox = TransformedBbox(bbox0, ax.transData)
        rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")

        ax.add_artist(rb_patch)

        ax.annotate(r"%d" % (int(h/100.)*100),
                    (year, h), va="bottom", ha="center")

    patch_gradient = BboxImage(ax.bbox,
                               interpolation="bicubic",
                               zorder=0.1,
                               )
    gradient = np.zeros((2, 2, 4), dtype=np.float)
    gradient[:,:,:3] = [1, 1, 0.]
    gradient[:,:,3] = [[0.1, 0.3],[0.3, 0.5]] # alpha channel
    patch_gradient.set_array(gradient)
    ax.add_artist(patch_gradient)


    ax.set_xlim(years[0]-0.5, years[-1]+0.5)
    ax.set_ylim(0, 10000)

    fig.savefig('ribbon_box.png')
    plt.show()