1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
#!/usr/bin/env python
import numpy as np
import pylab as P
#
# The hist() function now has a lot more options
#
#
# first create a single histogram
#
mu, sigma = 200, 25
x = mu + sigma*P.randn(10000)
# the histogram of the data with histtype='step'
n, bins, patches = P.hist(x, 50, normed=1, histtype='stepfilled')
P.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
# add a line showing the expected distribution
y = P.normpdf( bins, mu, sigma)
l = P.plot(bins, y, 'k--', linewidth=1.5)
#
# create a histogram by providing the bin edges (unequally spaced)
#
P.figure()
bins = [100,125,150,160,170,180,190,200,210,220,230,240,250,275,300]
# the histogram of the data with histtype='step'
n, bins, patches = P.hist(x, bins, normed=1, histtype='bar', rwidth=0.8)
#
# now we create a cumulative histogram of the data
#
P.figure()
n, bins, patches = P.hist(x, 50, normed=1, histtype='step', cumulative=True)
# add a line showing the expected distribution
y = P.normpdf( bins, mu, sigma).cumsum()
y /= y[-1]
l = P.plot(bins, y, 'k--', linewidth=1.5)
# create a second data-set with a smaller standard deviation
sigma2 = 15.
x = mu + sigma2*P.randn(10000)
n, bins, patches = P.hist(x, bins=bins, normed=1, histtype='step', cumulative=True)
# add a line showing the expected distribution
y = P.normpdf( bins, mu, sigma2).cumsum()
y /= y[-1]
l = P.plot(bins, y, 'r--', linewidth=1.5)
# finally overplot a reverted cumulative histogram
n, bins, patches = P.hist(x, bins=bins, normed=1,
histtype='step', cumulative=-1)
P.grid(True)
P.ylim(0, 1.05)
#
# histogram has the ability to plot multiple data in parallel ...
# Note the new color kwarg, used to override the default, which
# uses the line color cycle.
#
P.figure()
# create a new data-set
x = mu + sigma*P.randn(1000,3)
n, bins, patches = P.hist(x, 10, normed=1, histtype='bar',
color=['crimson', 'burlywood', 'chartreuse'],
label=['Crimson', 'Burlywood', 'Chartreuse'])
P.legend()
#
# ... or we can stack the data
#
P.figure()
n, bins, patches = P.hist(x, 10, normed=1, histtype='barstacked')
#
# finally: make a multiple-histogram of data-sets with different length
#
x0 = mu + sigma*P.randn(10000)
x1 = mu + sigma*P.randn(7000)
x2 = mu + sigma*P.randn(3000)
# and exercise the weights option by arbitrarily giving the first half
# of each series only half the weight of the others:
w0 = np.ones_like(x0)
w0[:len(x0)/2] = 0.5
w1 = np.ones_like(x1)
w1[:len(x1)/2] = 0.5
w2 = np.ones_like(x2)
w0[:len(x2)/2] = 0.5
P.figure()
n, bins, patches = P.hist( [x0,x1,x2], 10, weights=[w0, w1, w2], histtype='bar')
P.show()
|