File: screenshots.rst

package info (click to toggle)
matplotlib 2.0.0%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 91,640 kB
  • ctags: 29,525
  • sloc: python: 122,697; cpp: 60,806; ansic: 30,799; objc: 2,830; makefile: 224; sh: 85
file content (281 lines) | stat: -rw-r--r-- 7,451 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
.. _matplotlibscreenshots:

**********************
Screenshots
**********************

Here you'll find a host of example plots with the code that
generated them.

Simple Plot
===========

Here's a very basic :func:`~matplotlib.pyplot.plot` with text labels:

.. plot:: mpl_examples/pylab_examples/simple_plot.py

.. _screenshots_subplot_demo:

Subplot demo
============

Multiple axes (i.e. subplots) are created with the
:func:`~matplotlib.pyplot.subplot` command:

.. plot:: mpl_examples/subplots_axes_and_figures/subplot_demo.py

.. _screenshots_histogram_demo:

Histograms
==========

The :func:`~matplotlib.pyplot.hist` command automatically generates
histograms and returns the bin counts or probabilities:

.. plot:: mpl_examples/statistics/histogram_demo_features.py


.. _screenshots_path_demo:

Path demo
=========

You can add arbitrary paths in matplotlib using the
:mod:`matplotlib.path` module:

.. plot:: mpl_examples/shapes_and_collections/path_patch_demo.py

.. _screenshots_mplot3d_surface:

mplot3d
=========

The mplot3d toolkit (see :ref:`toolkit_mplot3d-tutorial` and
:ref:`mplot3d-examples-index`) has support for simple 3d graphs
including surface, wireframe, scatter, and bar charts.

.. plot:: mpl_examples/mplot3d/surface3d_demo.py

Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for
the `mplot3d` toolkit. This toolkit is included with all standard matplotlib
installs.

.. _screenshots_ellipse_demo:


Streamplot
==========

The :meth:`~matplotlib.pyplot.streamplot` function plots the streamlines of
a vector field. In addition to simply plotting the streamlines, it allows you
to map the colors and/or line widths of streamlines to a separate parameter,
such as the speed or local intensity of the vector field.

.. plot:: mpl_examples/images_contours_and_fields/streamplot_demo_features.py

This feature complements the :meth:`~matplotlib.pyplot.quiver` function for
plotting vector fields. Thanks to Tom Flannaghan and Tony Yu for adding the
streamplot function.


Ellipses
========

In support of the
`Phoenix <http://www.jpl.nasa.gov/news/phoenix/main.php>`_ mission to
Mars (which used matplotlib to display ground tracking of spacecraft),
Michael Droettboom built on work by Charlie Moad to provide an extremely
accurate  8-spline approximation to elliptical arcs (see
:class:`~matplotlib.patches.Arc`), which are insensitive to zoom level.

.. plot:: mpl_examples/pylab_examples/ellipse_demo.py

.. _screenshots_barchart_demo:

Bar charts
==========

Bar charts are simple to create using the :func:`~matplotlib.pyplot.bar`
command, which includes customizations such as error bars:

.. plot:: mpl_examples/pylab_examples/barchart_demo.py

It's also simple to create stacked bars
(`bar_stacked.py <../examples/pylab_examples/bar_stacked.html>`_),
or horizontal bar charts
(`barh_demo.py <../examples/lines_bars_and_markers/barh_demo.html>`_).

.. _screenshots_pie_demo:


Pie charts
==========

The :func:`~matplotlib.pyplot.pie` command allows you to easily create pie
charts.  Optional features include auto-labeling the percentage of area,
exploding one or more wedges from the center of the pie, and a shadow effect.
Take a close look at the attached code, which generates this figure in just
a few lines of code.

.. plot:: mpl_examples/pie_and_polar_charts/pie_demo_features.py

.. _screenshots_table_demo:

Table demo
==========

The :func:`~matplotlib.pyplot.table` command adds a text table
to an axes.

.. plot:: mpl_examples/pylab_examples/table_demo.py


.. _screenshots_scatter_demo:


Scatter demo
============

The :func:`~matplotlib.pyplot.scatter` command makes a scatter plot
with (optional) size and color arguments. This example plots changes
in Google's stock price, with marker sizes reflecting the
trading volume and colors varying with time. Here, the
alpha attribute is used to make semitransparent circle markers.

.. plot:: mpl_examples/pylab_examples/scatter_demo2.py


.. _screenshots_slider_demo:

Slider demo
===========

Matplotlib has basic GUI widgets that are independent of the graphical
user interface you are using, allowing you to write cross GUI figures
and widgets.  See :mod:`matplotlib.widgets` and the
`widget examples <../examples/widgets/index.html>`_.

.. plot:: mpl_examples/widgets/slider_demo.py


.. _screenshots_fill_demo:

Fill demo
=========

The :func:`~matplotlib.pyplot.fill` command lets you
plot filled curves and polygons:

.. plot:: mpl_examples/lines_bars_and_markers/fill_demo.py

Thanks to Andrew Straw for adding this function.

.. _screenshots_date_demo:

Date demo
=========

You can plot date data with major and minor ticks and custom tick formatters
for both.

.. plot:: mpl_examples/api/date_demo.py

See :mod:`matplotlib.ticker` and :mod:`matplotlib.dates` for details and usage.


.. _screenshots_log_demo:

Log plots
=========

The :func:`~matplotlib.pyplot.semilogx`,
:func:`~matplotlib.pyplot.semilogy` and
:func:`~matplotlib.pyplot.loglog` functions simplify the creation of
logarithmic plots.

.. plot:: mpl_examples/pylab_examples/log_demo.py

Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions
log-scaling infrastructure.

.. _screenshots_polar_demo:

Polar plots
===========

The :func:`~matplotlib.pyplot.polar` command generates polar plots.

.. plot:: mpl_examples/pylab_examples/polar_demo.py

.. _screenshots_legend_demo:


Legends
=======

The :func:`~matplotlib.pyplot.legend` command automatically
generates figure legends, with MATLAB-compatible legend placement
commands.

.. plot:: mpl_examples/api/legend_demo.py

Thanks to Charles Twardy for input on the legend command.

.. _screenshots_mathtext_examples_demo:

Mathtext_examples
=================

Below is a sampling of the many TeX expressions now supported by matplotlib's
internal mathtext engine.  The mathtext module provides TeX style mathematical
expressions using `FreeType <https://www.freetype.org/>`_
and the DejaVu, BaKoMa computer modern, or `STIX <http://www.stixfonts.org>`_
fonts.  See the :mod:`matplotlib.mathtext` module for additional details.

.. plot:: mpl_examples/pylab_examples/mathtext_examples.py

Matplotlib's mathtext infrastructure is an independent implementation and
does not require TeX or any external packages installed on your computer. See
the tutorial at :ref:`mathtext-tutorial`.


.. _screenshots_tex_demo:

Native TeX rendering
====================

Although matplotlib's internal math rendering engine is quite
powerful, sometimes you need TeX. Matplotlib supports external TeX
rendering of strings with the *usetex* option.

.. plot:: mpl_examples/pyplots/tex_demo.py

.. _screenshots_eeg_demo:

EEG demo
=========

You can embed matplotlib into pygtk, wx, Tk, or Qt applications.
Here is a screenshot of an EEG viewer called `pbrain
<https://github.com/nipy/pbrain>`__.

.. image:: ../_static/eeg_small.png

The lower axes uses :func:`~matplotlib.pyplot.specgram`
to plot the spectrogram of one of the EEG channels.

For examples of how to embed matplotlib in different toolkits, see:

   * :ref:`user_interfaces-embedding_in_gtk2`
   * :ref:`user_interfaces-embedding_in_wx2`
   * :ref:`user_interfaces-mpl_with_glade`
   * :ref:`user_interfaces-embedding_in_qt4`
   * :ref:`user_interfaces-embedding_in_tk`

XKCD-style sketch plots
=======================

matplotlib supports plotting in the style of `xkcd
<http://www.xkcd.com/>`.

.. plot:: mpl_examples/showcase/xkcd.py