File: leftventricle_bulleye.py

package info (click to toggle)
matplotlib 2.0.0%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 91,640 kB
  • ctags: 29,525
  • sloc: python: 122,697; cpp: 60,806; ansic: 30,799; objc: 2,830; makefile: 224; sh: 85
file content (206 lines) | stat: -rw-r--r-- 7,337 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
This example demonstrates how to create the 17 segment model for the left
ventricle recommended by the American Heart Association (AHA).
"""

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt


def bullseye_plot(ax, data, segBold=None, cmap=None, norm=None):
    """
    Bullseye representation for the left ventricle.

    Parameters
    ----------
    ax : axes
    data : list of int and float
        The intensity values for each of the 17 segments
    segBold: list of int, optional
        A list with the segments to highlight
    cmap : ColorMap or None, optional
        Optional argument to set the desired colormap
    norm : Normalize or None, optional
        Optional argument to normalize data into the [0.0, 1.0] range


    Notes
    -----
    This function create the 17 segment model for the left ventricle according
    to the American Heart Association (AHA) [1]_

    References
    ----------
    .. [1] M. D. Cerqueira, N. J. Weissman, V. Dilsizian, A. K. Jacobs,
        S. Kaul, W. K. Laskey, D. J. Pennell, J. A. Rumberger, T. Ryan,
        and M. S. Verani, "Standardized myocardial segmentation and
        nomenclature for tomographic imaging of the heart",
        Circulation, vol. 105, no. 4, pp. 539-542, 2002.
    """
    if segBold is None:
        segBold = []

    linewidth = 2
    data = np.array(data).ravel()

    if cmap is None:
        cmap = plt.cm.viridis

    if norm is None:
        norm = mpl.colors.Normalize(vmin=data.min(), vmax=data.max())

    theta = np.linspace(0, 2*np.pi, 768)
    r = np.linspace(0.2, 1, 4)

    # Create the bound for the segment 17
    for i in range(r.shape[0]):
        ax.plot(theta, np.repeat(r[i], theta.shape), '-k', lw=linewidth)

    # Create the bounds for the segments  1-12
    for i in range(6):
        theta_i = i*60*np.pi/180
        ax.plot([theta_i, theta_i], [r[1], 1], '-k', lw=linewidth)

    # Create the bounds for the segments 13-16
    for i in range(4):
        theta_i = i*90*np.pi/180 - 45*np.pi/180
        ax.plot([theta_i, theta_i], [r[0], r[1]], '-k', lw=linewidth)

    # Fill the segments 1-6
    r0 = r[2:4]
    r0 = np.repeat(r0[:, np.newaxis], 128, axis=1).T
    for i in range(6):
        # First segment start at 60 degrees
        theta0 = theta[i*128:i*128+128] + 60*np.pi/180
        theta0 = np.repeat(theta0[:, np.newaxis], 2, axis=1)
        z = np.ones((128, 2))*data[i]
        ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
        if i+1 in segBold:
            ax.plot(theta0, r0, '-k', lw=linewidth+2)
            ax.plot(theta0[0], [r[2], r[3]], '-k', lw=linewidth+1)
            ax.plot(theta0[-1], [r[2], r[3]], '-k', lw=linewidth+1)

    # Fill the segments 7-12
    r0 = r[1:3]
    r0 = np.repeat(r0[:, np.newaxis], 128, axis=1).T
    for i in range(6):
        # First segment start at 60 degrees
        theta0 = theta[i*128:i*128+128] + 60*np.pi/180
        theta0 = np.repeat(theta0[:, np.newaxis], 2, axis=1)
        z = np.ones((128, 2))*data[i+6]
        ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
        if i+7 in segBold:
            ax.plot(theta0, r0, '-k', lw=linewidth+2)
            ax.plot(theta0[0], [r[1], r[2]], '-k', lw=linewidth+1)
            ax.plot(theta0[-1], [r[1], r[2]], '-k', lw=linewidth+1)

    # Fill the segments 13-16
    r0 = r[0:2]
    r0 = np.repeat(r0[:, np.newaxis], 192, axis=1).T
    for i in range(4):
        # First segment start at 45 degrees
        theta0 = theta[i*192:i*192+192] + 45*np.pi/180
        theta0 = np.repeat(theta0[:, np.newaxis], 2, axis=1)
        z = np.ones((192, 2))*data[i+12]
        ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
        if i+13 in segBold:
            ax.plot(theta0, r0, '-k', lw=linewidth+2)
            ax.plot(theta0[0], [r[0], r[1]], '-k', lw=linewidth+1)
            ax.plot(theta0[-1], [r[0], r[1]], '-k', lw=linewidth+1)

    # Fill the segments 17
    if data.size == 17:
        r0 = np.array([0, r[0]])
        r0 = np.repeat(r0[:, np.newaxis], theta.size, axis=1).T
        theta0 = np.repeat(theta[:, np.newaxis], 2, axis=1)
        z = np.ones((theta.size, 2))*data[16]
        ax.pcolormesh(theta0, r0, z, cmap=cmap, norm=norm)
        if 17 in segBold:
            ax.plot(theta0, r0, '-k', lw=linewidth+2)

    ax.set_ylim([0, 1])
    ax.set_yticklabels([])
    ax.set_xticklabels([])


# Create the fake data
data = np.array(range(17)) + 1


# Make a figure and axes with dimensions as desired.
fig, ax = plt.subplots(figsize=(12, 8), nrows=1, ncols=3,
                       subplot_kw=dict(projection='polar'))
fig.canvas.set_window_title('Left Ventricle Bulls Eyes (AHA)')

# Create the axis for the colorbars
axl = fig.add_axes([0.14, 0.15, 0.2, 0.05])
axl2 = fig.add_axes([0.41, 0.15, 0.2, 0.05])
axl3 = fig.add_axes([0.69, 0.15, 0.2, 0.05])


# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
cmap = mpl.cm.viridis
norm = mpl.colors.Normalize(vmin=1, vmax=17)

# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar.  There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
cb1 = mpl.colorbar.ColorbarBase(axl, cmap=cmap, norm=norm,
                                orientation='horizontal')
cb1.set_label('Some Units')


# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
cmap2 = mpl.cm.cool
norm2 = mpl.colors.Normalize(vmin=1, vmax=17)

# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar.  There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
cb2 = mpl.colorbar.ColorbarBase(axl2, cmap=cmap2, norm=norm2,
                                orientation='horizontal')
cb2.set_label('Some other units')


# The second example illustrates the use of a ListedColormap, a
# BoundaryNorm, and extended ends to show the "over" and "under"
# value colors.
cmap3 = mpl.colors.ListedColormap(['r', 'g', 'b', 'c'])
cmap3.set_over('0.35')
cmap3.set_under('0.75')

# If a ListedColormap is used, the length of the bounds array must be
# one greater than the length of the color list.  The bounds must be
# monotonically increasing.
bounds = [2, 3, 7, 9, 15]
norm3 = mpl.colors.BoundaryNorm(bounds, cmap3.N)
cb3 = mpl.colorbar.ColorbarBase(axl3, cmap=cmap3, norm=norm3,
                                # to use 'extend', you must
                                # specify two extra boundaries:
                                boundaries=[0]+bounds+[18],
                                extend='both',
                                ticks=bounds,  # optional
                                spacing='proportional',
                                orientation='horizontal')
cb3.set_label('Discrete intervals, some other units')


# Create the 17 segment model
bullseye_plot(ax[0], data, cmap=cmap, norm=norm)
ax[0].set_title('Bulls Eye (AHA)')

bullseye_plot(ax[1], data, cmap=cmap2, norm=norm2)
ax[1].set_title('Bulls Eye (AHA)')

bullseye_plot(ax[2], data, segBold=[3, 5, 6, 11, 12, 16],
              cmap=cmap3, norm=norm3)
ax[2].set_title('Segments [3,5,6,11,12,16] in bold')

plt.show()