File: pie_demo2.py

package info (click to toggle)
matplotlib 2.0.0%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 91,640 kB
  • ctags: 29,525
  • sloc: python: 122,697; cpp: 60,806; ansic: 30,799; objc: 2,830; makefile: 224; sh: 85
file content (57 lines) | stat: -rw-r--r-- 1,564 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
Make a pie charts of varying size - see
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pie for the docstring.

This example shows a basic pie charts with labels optional features,
like autolabeling the percentage, offsetting a slice with "explode"
and adding a shadow, in different sizes.

"""
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

# Some data

labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15, 30, 45, 10]

explode = (0, 0.05, 0, 0)

# Make square figures and axes

the_grid = GridSpec(2, 2)

plt.subplot(the_grid[0, 0], aspect=1)

plt.pie(fracs, labels=labels, autopct='%1.1f%%', shadow=True)

plt.subplot(the_grid[0, 1], aspect=1)

plt.pie(fracs, explode=explode, labels=labels, autopct='%.0f%%', shadow=True)

plt.subplot(the_grid[1, 0], aspect=1)

patches, texts, autotexts = plt.pie(fracs, labels=labels,
                                    autopct='%.0f%%',
                                    shadow=True, radius=0.5)

# Make the labels on the small plot easier to read.
for t in texts:
    t.set_size('smaller')
for t in autotexts:
    t.set_size('x-small')
autotexts[0].set_color('y')

plt.subplot(the_grid[1, 1], aspect=1)

# Turn off shadow for tiny plot with exploded slice.
patches, texts, autotexts = plt.pie(fracs, explode=explode,
                                    labels=labels, autopct='%.0f%%',
                                    shadow=False, radius=0.5)
for t in texts:
    t.set_size('smaller')
for t in autotexts:
    t.set_size('x-small')
autotexts[0].set_color('y')

plt.show()