File: tricontour_vs_griddata.py

package info (click to toggle)
matplotlib 2.0.0%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 91,640 kB
  • ctags: 29,525
  • sloc: python: 122,697; cpp: 60,806; ansic: 30,799; objc: 2,830; makefile: 224; sh: 85
file content (53 lines) | stat: -rw-r--r-- 1,474 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
Comparison of griddata and tricontour for an unstructured triangular grid.
"""
from __future__ import print_function
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
import numpy.random as rnd
import matplotlib.mlab as mlab
import time

rnd.seed(0)
npts = 200
ngridx = 100
ngridy = 200
x = rnd.uniform(-2, 2, npts)
y = rnd.uniform(-2, 2, npts)
z = x*np.exp(-x**2 - y**2)

# griddata and contour.
start = time.clock()
plt.subplot(211)
xi = np.linspace(-2.1, 2.1, ngridx)
yi = np.linspace(-2.1, 2.1, ngridy)
zi = mlab.griddata(x, y, z, xi, yi, interp='linear')
plt.contour(xi, yi, zi, 15, linewidths=0.5, colors='k')
plt.contourf(xi, yi, zi, 15,
             norm=plt.Normalize(vmax=abs(zi).max(), vmin=-abs(zi).max()))
plt.colorbar()  # draw colorbar
plt.plot(x, y, 'ko', ms=3)
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.title('griddata and contour (%d points, %d grid points)' %
          (npts, ngridx*ngridy))
print('griddata and contour seconds: %f' % (time.clock() - start))

# tricontour.
start = time.clock()
plt.subplot(212)
triang = tri.Triangulation(x, y)
plt.tricontour(x, y, z, 15, linewidths=0.5, colors='k')
plt.tricontourf(x, y, z, 15,
                norm=plt.Normalize(vmax=abs(zi).max(), vmin=-abs(zi).max()))
plt.colorbar()
plt.plot(x, y, 'ko', ms=3)
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.title('tricontour (%d points)' % npts)
print('tricontour seconds: %f' % (time.clock() - start))

plt.subplots_adjust(hspace=0.5)

plt.show()