File: style_sheets_reference.py

package info (click to toggle)
matplotlib 2.0.0%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 91,640 kB
  • ctags: 29,525
  • sloc: python: 122,697; cpp: 60,806; ansic: 30,799; objc: 2,830; makefile: 224; sh: 85
file content (146 lines) | stat: -rw-r--r-- 4,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
======================
Style sheets reference
======================

This script demonstrates the different available style sheets on a
common set of example plots: scatter plot, image, bar graph, patches,
line plot and histogram,

"""

import numpy as np
import matplotlib.pyplot as plt


def plot_scatter(ax, prng, nb_samples=100):
    """Scatter plot.
    """
    for mu, sigma, marker in [(-.5, 0.75, 'o'), (0.75, 1., 's')]:
        x, y = prng.normal(loc=mu, scale=sigma, size=(2, nb_samples))
        ax.plot(x, y, ls='none', marker=marker)
    ax.set_xlabel('X-label')
    return ax


def plot_colored_sinusoidal_lines(ax):
    """Plot sinusoidal lines with colors following the style color cycle.
    """
    L = 2 * np.pi
    x = np.linspace(0, L)
    nb_colors = len(plt.rcParams['axes.prop_cycle'])
    shift = np.linspace(0, L, nb_colors, endpoint=False)
    for s in shift:
        ax.plot(x, np.sin(x + s), '-')
    ax.set_xlim([x[0], x[-1]])
    return ax


def plot_bar_graphs(ax, prng, min_value=5, max_value=25, nb_samples=5):
    """Plot two bar graphs side by side, with letters as x-tick labels.
    """
    x = np.arange(nb_samples)
    ya, yb = prng.randint(min_value, max_value, size=(2, nb_samples))
    width = 0.25
    ax.bar(x, ya, width)
    ax.bar(x + width, yb, width, color='C2')
    ax.set_xticks(x + width)
    ax.set_xticklabels(['a', 'b', 'c', 'd', 'e'])
    return ax


def plot_colored_circles(ax, prng, nb_samples=15):
    """Plot circle patches.

    NB: draws a fixed amount of samples, rather than using the length of
    the color cycle, because different styles may have different numbers
    of colors.
    """
    for sty_dict, j in zip(plt.rcParams['axes.prop_cycle'], range(nb_samples)):
        ax.add_patch(plt.Circle(prng.normal(scale=3, size=2),
                                radius=1.0, color=sty_dict['color']))
    # Force the limits to be the same across the styles (because different
    # styles may have different numbers of available colors).
    ax.set_xlim([-4, 8])
    ax.set_ylim([-5, 6])
    ax.set_aspect('equal', adjustable='box')  # to plot circles as circles
    return ax


def plot_image_and_patch(ax, prng, size=(20, 20)):
    """Plot an image with random values and superimpose a circular patch.
    """
    values = prng.random_sample(size=size)
    ax.imshow(values, interpolation='none')
    c = plt.Circle((5, 5), radius=5, label='patch')
    ax.add_patch(c)
    # Remove ticks
    ax.set_xticks([])
    ax.set_yticks([])


def plot_histograms(ax, prng, nb_samples=10000):
    """Plot 4 histograms and a text annotation.
    """
    params = ((10, 10), (4, 12), (50, 12), (6, 55))
    for a, b in params:
        values = prng.beta(a, b, size=nb_samples)
        ax.hist(values, histtype="stepfilled", bins=30, alpha=0.8, normed=True)
    # Add a small annotation.
    ax.annotate('Annotation', xy=(0.25, 4.25), xycoords='data',
                xytext=(0.9, 0.9), textcoords='axes fraction',
                va="top", ha="right",
                bbox=dict(boxstyle="round", alpha=0.2),
                arrowprops=dict(
                          arrowstyle="->",
                          connectionstyle="angle,angleA=-95,angleB=35,rad=10"),
                )
    return ax


def plot_figure(style_label=""):
    """Setup and plot the demonstration figure with a given style.
    """
    # Use a dedicated RandomState instance to draw the same "random" values
    # across the different figures.
    prng = np.random.RandomState(96917002)

    # Tweak the figure size to be better suited for a row of numerous plots:
    # double the width and halve the height. NB: use relative changes because
    # some styles may have a figure size different from the default one.
    (fig_width, fig_height) = plt.rcParams['figure.figsize']
    fig_size = [fig_width * 2, fig_height / 2]

    fig, axes = plt.subplots(ncols=6, nrows=1, num=style_label,
                             figsize=fig_size, squeeze=True)
    axes[0].set_ylabel(style_label)

    plot_scatter(axes[0], prng)
    plot_image_and_patch(axes[1], prng)
    plot_bar_graphs(axes[2], prng)
    plot_colored_circles(axes[3], prng)
    plot_colored_sinusoidal_lines(axes[4])
    plot_histograms(axes[5], prng)

    fig.tight_layout()

    return fig


if __name__ == "__main__":

    # Setup a list of all available styles, in alphabetical order but
    # the `default` and `classic` ones, which will be forced resp. in
    # first and second position.
    style_list = list(plt.style.available)  # *new* list: avoids side effects.
    style_list.remove('classic')  # `classic` is in the list: first remove it.
    style_list.sort()
    style_list.insert(0, u'default')
    style_list.insert(1, u'classic')

    # Plot a demonstration figure for every available style sheet.
    for style_label in style_list:
        with plt.style.context(style_label):
            fig = plot_figure(style_label=style_label)

    plt.show()