1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
.. _thirdparty-index:
********************
Third party packages
********************
Several external packages that extend or build on Matplotlib functionality are
listed below. They are maintained and distributed separately from Matplotlib
and thus need to be installed individually.
Please submit an issue or pull request on Github if you have created
a package that you would like to have included. We are also happy to
host third party packages within the `Matplotlib Github Organization
<https://github.com/matplotlib>`_.
Mapping toolkits
****************
Basemap
=======
`Basemap <http://matplotlib.org/basemap>`_ plots data on map projections, with
continental and political boundaries.
.. image:: /_static/basemap_contour1.png
:height: 400px
Cartopy
=======
`Cartopy <http://scitools.org.uk/cartopy/docs/latest>`_ builds on top
of Matplotlib to provide object oriented map projection definitions
and close integration with Shapely for powerful yet easy-to-use vector
data processing tools. An example plot from the `Cartopy gallery
<http://scitools.org.uk/cartopy/docs/latest/gallery.html>`_:
.. image:: /_static/cartopy_hurricane_katrina_01_00.png
:height: 400px
Declarative libraries
*********************
ggplot
======
`ggplot <https://github.com/yhat/ggplot>`_ is a port of the R ggplot2 package
to python based on Matplotlib.
.. image:: /_static/ggplot.png
:height: 195px
holoviews
=========
`holoviews <http://holoviews.org>`_ makes it easier to visualize data
interactively, especially in a `Jupyter notebook <http://jupyter.org>`_, by
providing a set of declarative plotting objects that store your data and
associated metadata. Your data is then immediately visualizable alongside or
overlaid with other data, either statically or with automatically provided
widgets for parameter exploration.
.. image:: /_static/holoviews.png
:height: 354px
plotnine
========
`plotnine <https://plotnine.readthedocs.io/en/stable/>`_ implements a grammar
of graphics, similar to R's `ggplot2 <http://ggplot2.org/>`_. The grammar allows
users to compose plots by explicitly mapping data to the visual objects that
make up the plot.
.. image:: /_static/plotnine.png
Specialty plots
***************
Broken Axes
===========
`brokenaxes <https://github.com/bendichter/brokenaxes>`_ supplies an axes
class that can have a visual break to indicate a discontinuous range.
.. image:: /_static/brokenaxes.png
DeCiDa
======
`DeCiDa <https://pypi.python.org/pypi/DeCiDa>`_ is a library of functions
and classes for electron device characterization, electronic circuit design and
general data visualization and analysis.
Matplotlib-Venn
===============
`Matplotlib-Venn <https://github.com/konstantint/matplotlib-venn>`_ provides a
set of functions for plotting 2- and 3-set area-weighted (or unweighted) Venn
diagrams.
mpl-probscale
=============
`mpl-probscale <http://matplotlib.org/mpl-probscale/>`_ is a small extension
that allows Matplotlib users to specify probabilty scales. Simply importing the
``probscale`` module registers the scale with Matplotlib, making it accessible
via e.g., ``ax.set_xscale('prob')`` or ``plt.yscale('prob')``.
.. image:: /_static/probscale_demo.png
mpl-scatter-density
===================
`mpl-scatter-density <https://github.com/astrofrog/mpl-scatter-density>`_ is a
small package that makes it easy to make scatter plots of large numbers
of points using a density map. The following example contains around 13 million
points and the plotting (excluding reading in the data) took less than a
second on an average laptop:
.. image:: /_static/mpl-scatter-density.png
:height: 400px
When used in interactive mode, the density map is downsampled on-the-fly while
panning/zooming in order to provide a smooth interactive experience.
mplstereonet
============
`mplstereonet <https://github.com/joferkington/mplstereonet>`_ provides
stereonets for plotting and analyzing orientation data in Matplotlib.
Natgrid
=======
`mpl_toolkits.natgrid <https://github.com/matplotlib/natgrid>`_ is an interface
to the natgrid C library for gridding irregularly spaced data.
pyUpSet
=======
`pyUpSet <https://github.com/ImSoErgodic/py-upset>`_ is a
static Python implementation of the `UpSet suite by Lex et al.
<http://www.caleydo.org/tools/upset/>`_ to explore complex intersections of
sets and data frames.
seaborn
=======
`seaborn <http://seaborn.pydata.org/>`_ is a high level interface for drawing
statistical graphics with Matplotlib. It aims to make visualization a central
part of exploring and understanding complex datasets.
.. image:: /_static/seaborn.png
:height: 157px
WCSAxes
=======
The `Astropy <http://www.astropy.org>`_ core package includes a submodule
called WCSAxes (available at `astropy.visualization.wcsaxes
<http://docs.astropy.org/en/stable/visualization/wcsaxes/index.html>`_) which
adds Matplotlib projections for Astronomical image data. The following is an
example of a plot made with WCSAxes which includes the original coordinate
system of the image and an overlay of a different coordinate system:
.. image:: /_static/wcsaxes.jpg
:height: 400px
Windrose
========
`Windrose <https://github.com/scls19fr/windrose>`_ is a Python Matplotlib,
Numpy library to manage wind data, draw windroses (also known as polar rose
plots), draw probability density functions and fit Weibull distributions.
Interactivity
*************
mplcursors
==========
`mplcursors <https://mplcursors.readthedocs.io>`_ provides interactive data
cursors for Matplotlib.
MplDataCursor
=============
`MplDataCursor <https://github.com/joferkington/mpldatacursor>`_ is a toolkit
written by Joe Kington to provide interactive "data cursors" (clickable
annotation boxes) for Matplotlib.
Miscellaneous
*************
adjustText
==========
`adjustText <https://github.com/Phlya/adjustText>`_ is a small library for
automatically adjusting text position in Matplotlib plots to minimize overlaps
between them, specified points and other objects.
.. image:: /_static/adjustText.png
iTerm2 terminal backend
=======================
`matplotlib_iterm2 <https://github.com/oselivanov/matplotlib_iterm2>`_ is an
external Matplotlib backend using the iTerm2 nightly build inline image display
feature.
.. image:: /_static/matplotlib_iterm2_demo.png
mplcairo
========
`mplcairo <https://github.com/anntzer/mplcairo>`_ is a cairo backend for
Matplotlib, with faster and more accurate marker drawing, support for a wider
selection of font formats and complex text layout, and various other features.
mpl-template
============
`mpl-template <https://austinorr.github.io/mpl-template/index.html>`_ provides
a customizable way to add engineering figure elements such as a title block,
border, and logo.
.. image:: /_static/mpl_template_example.png
:height: 330px
|