File: line_collection.py

package info (click to toggle)
matplotlib 3.0.2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 77,480 kB
  • sloc: python: 124,525; cpp: 58,549; ansic: 29,599; objc: 2,348; makefile: 148; sh: 57
file content (103 lines) | stat: -rw-r--r-- 3,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
===============
Line Collection
===============

Plotting lines with Matplotlib.

:class:`~matplotlib.collections.LineCollection` allows one to plot multiple
lines on a figure. Below we show off some of its properties.
"""
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib import colors as mcolors

import numpy as np

# In order to efficiently plot many lines in a single set of axes,
# Matplotlib has the ability to add the lines all at once. Here is a
# simple example showing how it is done.

x = np.arange(100)
# Here are many sets of y to plot vs x
ys = x[:50, np.newaxis] + x[np.newaxis, :]

segs = np.zeros((50, 100, 2))
segs[:, :, 1] = ys
segs[:, :, 0] = x

# Mask some values to test masked array support:
segs = np.ma.masked_where((segs > 50) & (segs < 60), segs)

# We need to set the plot limits.
fig, ax = plt.subplots()
ax.set_xlim(x.min(), x.max())
ax.set_ylim(ys.min(), ys.max())

# colors is sequence of rgba tuples
# linestyle is a string or dash tuple. Legal string values are
#          solid|dashed|dashdot|dotted.  The dash tuple is (offset, onoffseq)
#          where onoffseq is an even length tuple of on and off ink in points.
#          If linestyle is omitted, 'solid' is used
# See :class:`matplotlib.collections.LineCollection` for more information
colors = [mcolors.to_rgba(c)
          for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]

line_segments = LineCollection(segs, linewidths=(0.5, 1, 1.5, 2),
                               colors=colors, linestyle='solid')
ax.add_collection(line_segments)
ax.set_title('Line collection with masked arrays')
plt.show()

###############################################################################
# In order to efficiently plot many lines in a single set of axes,
# Matplotlib has the ability to add the lines all at once. Here is a
# simple example showing how it is done.

N = 50
x = np.arange(N)
# Here are many sets of y to plot vs x
ys = [x + i for i in x]

# We need to set the plot limits, they will not autoscale
fig, ax = plt.subplots()
ax.set_xlim(np.min(x), np.max(x))
ax.set_ylim(np.min(ys), np.max(ys))

# colors is sequence of rgba tuples
# linestyle is a string or dash tuple. Legal string values are
#          solid|dashed|dashdot|dotted.  The dash tuple is (offset, onoffseq)
#          where onoffseq is an even length tuple of on and off ink in points.
#          If linestyle is omitted, 'solid' is used
# See :class:`matplotlib.collections.LineCollection` for more information

# Make a sequence of x,y pairs
line_segments = LineCollection([np.column_stack([x, y]) for y in ys],
                               linewidths=(0.5, 1, 1.5, 2),
                               linestyles='solid')
line_segments.set_array(x)
ax.add_collection(line_segments)
axcb = fig.colorbar(line_segments)
axcb.set_label('Line Number')
ax.set_title('Line Collection with mapped colors')
plt.sci(line_segments)  # This allows interactive changing of the colormap.
plt.show()

#############################################################################
#
# ------------
#
# References
# """"""""""
#
# The use of the following functions, methods, classes and modules is shown
# in this example:

import matplotlib
matplotlib.collections
matplotlib.collections.LineCollection
matplotlib.cm.ScalarMappable.set_array
matplotlib.axes.Axes.add_collection
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.pyplot.sci