1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
.. _coding_guidelines:
*****************
Coding guidelines
*****************
We appreciate these guidelines being followed because it improves the readability,
consistency, and maintainability of the code base.
.. admonition:: API guidelines
:class: seealso
If adding new features, changing behavior or function signatures, or removing
public interfaces, please consult the :ref:`api_changes`.
.. _code-style:
PEP8, as enforced by flake8
===========================
Formatting should follow the recommendations of PEP8_, as enforced by flake8_.
Matplotlib modifies PEP8 to extend the maximum line length to 88
characters. You can check flake8 compliance from the command line with ::
python -m pip install flake8
flake8 /path/to/module.py
or your editor may provide integration with it. Note that Matplotlib intentionally
does not use the black_ auto-formatter (1__), in particular due to its inability
to understand the semantics of mathematical expressions (2__, 3__).
.. _PEP8: https://www.python.org/dev/peps/pep-0008/
.. _flake8: https://flake8.pycqa.org/
.. _black: https://black.readthedocs.io/
.. __: https://github.com/matplotlib/matplotlib/issues/18796
.. __: https://github.com/psf/black/issues/148
.. __: https://github.com/psf/black/issues/1984
Package imports
===============
Import the following modules using the standard scipy conventions::
import numpy as np
import numpy.ma as ma
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import matplotlib.patches as mpatches
In general, Matplotlib modules should **not** import `.rcParams` using ``from
matplotlib import rcParams``, but rather access it as ``mpl.rcParams``. This
is because some modules are imported very early, before the `.rcParams`
singleton is constructed.
Variable names
==============
When feasible, please use our internal variable naming convention for objects
of a given class and objects of any child class:
+------------------------------------+---------------+------------------------------------------+
| base class | variable | multiples |
+====================================+===============+==========================================+
| `~matplotlib.figure.FigureBase` | ``fig`` | |
+------------------------------------+---------------+------------------------------------------+
| `~matplotlib.axes.Axes` | ``ax`` | |
+------------------------------------+---------------+------------------------------------------+
| `~matplotlib.transforms.Transform` | ``trans`` | ``trans_<source>_<target>`` |
+ + + +
| | | ``trans_<source>`` when target is screen |
+------------------------------------+---------------+------------------------------------------+
Generally, denote more than one instance of the same class by adding suffixes to
the variable names. If a format isn't specified in the table, use numbers or
letters as appropriate.
.. _type-hints:
Type hints
==========
If you add new public API or change public API, update or add the
corresponding `mypy <https://mypy.readthedocs.io/en/latest/>`_ type hints.
We generally use `stub files
<https://typing.readthedocs.io/en/latest/source/stubs.html#type-stubs>`_
(``*.pyi``) to store the type information; for example ``colors.pyi`` contains
the type information for ``colors.py``. A notable exception is ``pyplot.py``,
which is type hinted inline.
Type hints can be validated by the `stubtest
<https://mypy.readthedocs.io/en/stable/stubtest.html>`_ tool, which can be run
locally using ``tox -e stubtest`` and is a part of the :ref:`automated-tests`
suite. Type hints for existing functions are also checked by the mypy
:ref:`pre-commit hook <pre-commit-hooks>`.
New modules and files: installation
===================================
* If you have added new files or directories, or reorganized existing ones, make sure the
new files are included in the :file:`meson.build` in the corresponding directories.
* New modules *may* be typed inline or using parallel stub file like existing modules.
C/C++ extensions
================
* Extensions may be written in C or C++.
* Code style should conform to PEP7 (understanding that PEP7 doesn't
address C++, but most of its admonitions still apply).
* Python/C interface code should be kept separate from the core C/C++
code. The interface code should be named :file:`FOO_wrap.cpp` or
:file:`FOO_wrapper.cpp`.
* Header file documentation (aka docstrings) should be in Numpydoc
format. We don't plan on using automated tools for these
docstrings, and the Numpydoc format is well understood in the
scientific Python community.
* C/C++ code in the :file:`extern/` directory is vendored, and should be kept
close to upstream whenever possible. It can be modified to fix bugs or
implement new features only if the required changes cannot be made elsewhere
in the codebase. In particular, avoid making style fixes to it.
.. _keyword-argument-processing:
Keyword argument processing
===========================
Matplotlib makes extensive use of ``**kwargs`` for pass-through customizations
from one function to another. A typical example is
`~matplotlib.axes.Axes.text`. The definition of `matplotlib.pyplot.text` is a
simple pass-through to `matplotlib.axes.Axes.text`::
# in pyplot.py
def text(x, y, s, fontdict=None, **kwargs):
return gca().text(x, y, s, fontdict=fontdict, **kwargs)
`matplotlib.axes.Axes.text` (simplified for illustration) just
passes all ``args`` and ``kwargs`` on to ``matplotlib.text.Text.__init__``::
# in axes/_axes.py
def text(self, x, y, s, fontdict=None, **kwargs):
t = Text(x=x, y=y, text=s, **kwargs)
and ``matplotlib.text.Text.__init__`` (again, simplified)
just passes them on to the `matplotlib.artist.Artist.update` method::
# in text.py
def __init__(self, x=0, y=0, text='', **kwargs):
super().__init__()
self.update(kwargs)
``update`` does the work looking for methods named like
``set_property`` if ``property`` is a keyword argument. i.e., no one
looks at the keywords, they just get passed through the API to the
artist constructor which looks for suitably named methods and calls
them with the value.
As a general rule, the use of ``**kwargs`` should be reserved for
pass-through keyword arguments, as in the example above. If all the
keyword args are to be used in the function, and not passed
on, use the key/value keyword args in the function definition rather
than the ``**kwargs`` idiom.
In some cases, you may want to consume some keys in the local
function, and let others pass through. Instead of popping arguments to
use off ``**kwargs``, specify them as keyword-only arguments to the local
function. This makes it obvious at a glance which arguments will be
consumed in the function. For example, in
:meth:`~matplotlib.axes.Axes.plot`, ``scalex`` and ``scaley`` are
local arguments and the rest are passed on as
:meth:`~matplotlib.lines.Line2D` keyword arguments::
# in axes/_axes.py
def plot(self, *args, scalex=True, scaley=True, **kwargs):
lines = []
for line in self._get_lines(*args, **kwargs):
self.add_line(line)
lines.append(line)
.. _using_logging:
Using logging for debug messages
================================
Matplotlib uses the standard Python `logging` library to write verbose
warnings, information, and debug messages. Please use it! In all those places
you write `print` calls to do your debugging, try using `logging.debug`
instead!
To include `logging` in your module, at the top of the module, you need to
``import logging``. Then calls in your code like::
_log = logging.getLogger(__name__) # right after the imports
# code
# more code
_log.info('Here is some information')
_log.debug('Here is some more detailed information')
will log to a logger named ``matplotlib.yourmodulename``.
If an end-user of Matplotlib sets up `logging` to display at levels more
verbose than ``logging.WARNING`` in their code with the Matplotlib-provided
helper::
plt.set_loglevel("debug")
or manually with ::
import logging
logging.basicConfig(level=logging.DEBUG)
import matplotlib.pyplot as plt
Then they will receive messages like
.. code-block:: none
DEBUG:matplotlib.backends:backend MacOSX version unknown
DEBUG:matplotlib.yourmodulename:Here is some information
DEBUG:matplotlib.yourmodulename:Here is some more detailed information
Avoid using pre-computed strings (``f-strings``, ``str.format``,etc.) for logging because
of security and performance issues, and because they interfere with style handlers. For
example, use ``_log.error('hello %s', 'world')`` rather than ``_log.error('hello
{}'.format('world'))`` or ``_log.error(f'hello {s}')``.
Which logging level to use?
---------------------------
There are five levels at which you can emit messages.
- `logging.critical` and `logging.error` are really only there for errors that
will end the use of the library but not kill the interpreter.
- `logging.warning` and `._api.warn_external` are used to warn the user,
see below.
- `logging.info` is for information that the user may want to know if the
program behaves oddly. They are not displayed by default. For instance, if
an object isn't drawn because its position is ``NaN``, that can usually
be ignored, but a mystified user could call
``logging.basicConfig(level=logging.INFO)`` and get an error message that
says why.
- `logging.debug` is the least likely to be displayed, and hence can be the
most verbose. "Expected" code paths (e.g., reporting normal intermediate
steps of layouting or rendering) should only log at this level.
By default, `logging` displays all log messages at levels higher than
``logging.WARNING`` to `sys.stderr`.
The `logging tutorial`_ suggests that the difference between `logging.warning`
and `._api.warn_external` (which uses `warnings.warn`) is that
`._api.warn_external` should be used for things the user must change to stop
the warning (typically in the source), whereas `logging.warning` can be more
persistent. Moreover, note that `._api.warn_external` will by default only
emit a given warning *once* for each line of user code, whereas
`logging.warning` will display the message every time it is called.
By default, `warnings.warn` displays the line of code that has the ``warn``
call. This usually isn't more informative than the warning message itself.
Therefore, Matplotlib uses `._api.warn_external` which uses `warnings.warn`,
but goes up the stack and displays the first line of code outside of
Matplotlib. For example, for the module::
# in my_matplotlib_module.py
import warnings
def set_range(bottom, top):
if bottom == top:
warnings.warn('Attempting to set identical bottom==top')
running the script::
from matplotlib import my_matplotlib_module
my_matplotlib_module.set_range(0, 0) # set range
will display
.. code-block:: none
UserWarning: Attempting to set identical bottom==top
warnings.warn('Attempting to set identical bottom==top')
Modifying the module to use `._api.warn_external`::
from matplotlib import _api
def set_range(bottom, top):
if bottom == top:
_api.warn_external('Attempting to set identical bottom==top')
and running the same script will display
.. code-block:: none
UserWarning: Attempting to set identical bottom==top
my_matplotlib_module.set_range(0, 0) # set range
.. _logging tutorial: https://docs.python.org/3/howto/logging.html#logging-basic-tutorial
.. _licence-coding-guide:
.. include:: license.rst
:start-line: 2
.. toctree::
:hidden:
license.rst
|