File: image_slices_viewer.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (53 lines) | stat: -rw-r--r-- 1,511 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
============
Scroll event
============

In this example a scroll wheel event is used to scroll through 2D slices of
3D data.

.. note::
    This example exercises the interactive capabilities of Matplotlib, and this
    will not appear in the static documentation. Please run this code on your
    machine to see the interactivity.

    You can copy and paste individual parts, or download the entire example
    using the link at the bottom of the page.
"""

import matplotlib.pyplot as plt
import numpy as np


class IndexTracker:
    def __init__(self, ax, X):
        self.index = 0
        self.X = X
        self.ax = ax
        self.im = ax.imshow(self.X[:, :, self.index])
        self.update()

    def on_scroll(self, event):
        print(event.button, event.step)
        increment = 1 if event.button == 'up' else -1
        max_index = self.X.shape[-1] - 1
        self.index = np.clip(self.index + increment, 0, max_index)
        self.update()

    def update(self):
        self.im.set_data(self.X[:, :, self.index])
        self.ax.set_title(
            f'Use scroll wheel to navigate\nindex {self.index}')
        self.im.axes.figure.canvas.draw()


x, y, z = np.ogrid[-10:10:100j, -10:10:100j, 1:10:20j]
X = np.sin(x * y * z) / (x * y * z)

fig, ax = plt.subplots()
# create an IndexTracker and make sure it lives during the whole
# lifetime of the figure by assigning it to a variable
tracker = IndexTracker(ax, X)

fig.canvas.mpl_connect('scroll_event', tracker.on_scroll)
plt.show()