File: multiprocess_sgskip.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (106 lines) | stat: -rw-r--r-- 2,416 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
===============
Multiprocessing
===============

Demo of using multiprocessing for generating data in one process and
plotting in another.

Written by Robert Cimrman
"""

import multiprocessing as mp
import time

import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)

# %%
#
# Processing Class
# ================
#
# This class plots data it receives from a pipe.
#


class ProcessPlotter:
    def __init__(self):
        self.x = []
        self.y = []

    def terminate(self):
        plt.close('all')

    def call_back(self):
        while self.pipe.poll():
            command = self.pipe.recv()
            if command is None:
                self.terminate()
                return False
            else:
                self.x.append(command[0])
                self.y.append(command[1])
                self.ax.plot(self.x, self.y, 'ro')
        self.fig.canvas.draw()
        return True

    def __call__(self, pipe):
        print('starting plotter...')

        self.pipe = pipe
        self.fig, self.ax = plt.subplots()
        timer = self.fig.canvas.new_timer(interval=1000)
        timer.add_callback(self.call_back)
        timer.start()

        print('...done')
        plt.show()

# %%
#
# Plotting class
# ==============
#
# This class uses multiprocessing to spawn a process to run code from the
# class above. When initialized, it creates a pipe and an instance of
# ``ProcessPlotter`` which will be run in a separate process.
#
# When run from the command line, the parent process sends data to the spawned
# process which is then plotted via the callback function specified in
# ``ProcessPlotter:__call__``.
#


class NBPlot:
    def __init__(self):
        self.plot_pipe, plotter_pipe = mp.Pipe()
        self.plotter = ProcessPlotter()
        self.plot_process = mp.Process(
            target=self.plotter, args=(plotter_pipe,), daemon=True)
        self.plot_process.start()

    def plot(self, finished=False):
        send = self.plot_pipe.send
        if finished:
            send(None)
        else:
            data = np.random.random(2)
            send(data)


def main():
    pl = NBPlot()
    for _ in range(10):
        pl.plot()
        time.sleep(0.5)
    pl.plot(finished=True)


if __name__ == '__main__':
    if plt.get_backend() == "MacOSX":
        mp.set_start_method("forkserver")
    main()