1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
"""
.. redirect-from:: /gallery/statistics/histogram_features
===================================
Histogram bins, density, and weight
===================================
The `.Axes.hist` method can flexibly create histograms in a few different ways,
which is flexible and helpful, but can also lead to confusion. In particular,
you can:
- bin the data as you want, either with an automatically chosen number of
bins, or with fixed bin edges,
- normalize the histogram so that its integral is one,
- and assign weights to the data points, so that each data point affects the
count in its bin differently.
The Matplotlib ``hist`` method calls `numpy.histogram` and plots the results,
therefore users should consult the numpy documentation for a definitive guide.
Histograms are created by defining bin edges, and taking a dataset of values
and sorting them into the bins, and counting or summing how much data is in
each bin. In this simple example, 9 numbers between 1 and 4 are sorted into 3
bins:
"""
import matplotlib.pyplot as plt
import numpy as np
rng = np.random.default_rng(19680801)
xdata = np.array([1.2, 2.3, 3.3, 3.1, 1.7, 3.4, 2.1, 1.25, 1.3])
xbins = np.array([1, 2, 3, 4])
# changing the style of the histogram bars just to make it
# very clear where the boundaries of the bins are:
style = {'facecolor': 'none', 'edgecolor': 'C0', 'linewidth': 3}
fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, **style)
# plot the xdata locations on the x axis:
ax.plot(xdata, 0*xdata, 'd')
ax.set_ylabel('Number per bin')
ax.set_xlabel('x bins (dx=1.0)')
# %%
# Modifying bins
# ==============
#
# Changing the bin size changes the shape of this sparse histogram, so its a
# good idea to choose bins with some care with respect to your data. Here we
# make the bins half as wide.
xbins = np.arange(1, 4.5, 0.5)
fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, **style)
ax.plot(xdata, 0*xdata, 'd')
ax.set_ylabel('Number per bin')
ax.set_xlabel('x bins (dx=0.5)')
# %%
# We can also let numpy (via Matplotlib) choose the bins automatically, or
# specify a number of bins to choose automatically:
fig, ax = plt.subplot_mosaic([['auto', 'n4']],
sharex=True, sharey=True, layout='constrained')
ax['auto'].hist(xdata, **style)
ax['auto'].plot(xdata, 0*xdata, 'd')
ax['auto'].set_ylabel('Number per bin')
ax['auto'].set_xlabel('x bins (auto)')
ax['n4'].hist(xdata, bins=4, **style)
ax['n4'].plot(xdata, 0*xdata, 'd')
ax['n4'].set_xlabel('x bins ("bins=4")')
# %%
# Normalizing histograms: density and weight
# ==========================================
#
# Counts-per-bin is the default length of each bar in the histogram. However,
# we can also normalize the bar lengths as a probability density function using
# the ``density`` parameter:
fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, density=True, **style)
ax.set_ylabel('Probability density [$V^{-1}$])')
ax.set_xlabel('x bins (dx=0.5 $V$)')
# %%
# This normalization can be a little hard to interpret when just exploring the
# data. The value attached to each bar is divided by the total number of data
# points *and* the width of the bin, and thus the values _integrate_ to one
# when integrating across the full range of data.
# e.g. ::
#
# density = counts / (sum(counts) * np.diff(bins))
# np.sum(density * np.diff(bins)) == 1
#
# This normalization is how `probability density functions
# <https://en.wikipedia.org/wiki/Probability_density_function>`_ are defined in
# statistics. If :math:`X` is a random variable on :math:`x`, then :math:`f_X`
# is is the probability density function if :math:`P[a<X<b] = \int_a^b f_X dx`.
# If the units of x are Volts, then the units of :math:`f_X` are :math:`V^{-1}`
# or probability per change in voltage.
#
# The usefulness of this normalization is a little more clear when we draw from
# a known distribution and try to compare with theory. So, choose 1000 points
# from a `normal distribution
# <https://en.wikipedia.org/wiki/Normal_distribution>`_, and also calculate the
# known probability density function:
xdata = rng.normal(size=1000)
xpdf = np.arange(-4, 4, 0.1)
pdf = 1 / (np.sqrt(2 * np.pi)) * np.exp(-xpdf**2 / 2)
# %%
# If we don't use ``density=True``, we need to scale the expected probability
# distribution function by both the length of the data and the width of the
# bins:
fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')
dx = 0.1
xbins = np.arange(-4, 4, dx)
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label='Counts')
# scale and plot the expected pdf:
ax['False'].plot(xpdf, pdf * len(xdata) * dx, label=r'$N\,f_X(x)\,\delta x$')
ax['False'].set_ylabel('Count per bin')
ax['False'].set_xlabel('x bins [V]')
ax['False'].legend()
ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label='density')
ax['True'].plot(xpdf, pdf, label='$f_X(x)$')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend()
# %%
# One advantage of using the density is therefore that the shape and amplitude
# of the histogram does not depend on the size of the bins. Consider an
# extreme case where the bins do not have the same width. In this example, the
# bins below ``x=-1.25`` are six times wider than the rest of the bins. By
# normalizing by density, we preserve the shape of the distribution, whereas if
# we do not, then the wider bins have much higher counts than the thinner bins:
fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')
dx = 0.1
xbins = np.hstack([np.arange(-4, -1.25, 6*dx), np.arange(-1.25, 4, dx)])
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label='Counts')
ax['False'].plot(xpdf, pdf * len(xdata) * dx, label=r'$N\,f_X(x)\,\delta x_0$')
ax['False'].set_ylabel('Count per bin')
ax['False'].set_xlabel('x bins [V]')
ax['False'].legend()
ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label='density')
ax['True'].plot(xpdf, pdf, label='$f_X(x)$')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend()
# %%
# Similarly, if we want to compare histograms with different bin widths, we may
# want to use ``density=True``:
fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')
# expected PDF
ax['True'].plot(xpdf, pdf, '--', label='$f_X(x)$', color='k')
for nn, dx in enumerate([0.1, 0.4, 1.2]):
xbins = np.arange(-4, 4, dx)
# expected histogram:
ax['False'].plot(xpdf, pdf*1000*dx, '--', color=f'C{nn}')
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step')
ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label=dx)
# Labels:
ax['False'].set_xlabel('x bins [$V$]')
ax['False'].set_ylabel('Count per bin')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend(fontsize='small', title='bin width:')
# %%
# Sometimes people want to normalize so that the sum of counts is one. This is
# analogous to a `probability mass function
# <https://en.wikipedia.org/wiki/Probability_mass_function>`_ for a discrete
# variable where the sum of probabilities for all the values equals one. Using
# ``hist``, we can get this normalization if we set the *weights* to 1/N.
# Note that the amplitude of this normalized histogram still depends on
# width and/or number of the bins:
fig, ax = plt.subplots(layout='constrained', figsize=(3.5, 3))
for nn, dx in enumerate([0.1, 0.4, 1.2]):
xbins = np.arange(-4, 4, dx)
ax.hist(xdata, bins=xbins, weights=1/len(xdata) * np.ones(len(xdata)),
histtype='step', label=f'{dx}')
ax.set_xlabel('x bins [$V$]')
ax.set_ylabel('Bin count / N')
ax.legend(fontsize='small', title='bin width:')
# %%
# The value of normalizing histograms is comparing two distributions that have
# different sized populations. Here we compare the distribution of ``xdata``
# with a population of 1000, and ``xdata2`` with 100 members.
xdata2 = rng.normal(size=100)
fig, ax = plt.subplot_mosaic([['no_norm', 'density', 'weight']],
layout='constrained', figsize=(8, 4))
xbins = np.arange(-4, 4, 0.25)
ax['no_norm'].hist(xdata, bins=xbins, histtype='step')
ax['no_norm'].hist(xdata2, bins=xbins, histtype='step')
ax['no_norm'].set_ylabel('Counts')
ax['no_norm'].set_xlabel('x bins [$V$]')
ax['no_norm'].set_title('No normalization')
ax['density'].hist(xdata, bins=xbins, histtype='step', density=True)
ax['density'].hist(xdata2, bins=xbins, histtype='step', density=True)
ax['density'].set_ylabel('Probability density [$V^{-1}$]')
ax['density'].set_title('Density=True')
ax['density'].set_xlabel('x bins [$V$]')
ax['weight'].hist(xdata, bins=xbins, histtype='step',
weights=1 / len(xdata) * np.ones(len(xdata)),
label='N=1000')
ax['weight'].hist(xdata2, bins=xbins, histtype='step',
weights=1 / len(xdata2) * np.ones(len(xdata2)),
label='N=100')
ax['weight'].set_xlabel('x bins [$V$]')
ax['weight'].set_ylabel('Counts / N')
ax['weight'].legend(fontsize='small')
ax['weight'].set_title('Weight = 1/N')
plt.show()
# %%
#
# .. tags:: plot-type: histogram, domain: statistics
#
# .. admonition:: References
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
#
# - `matplotlib.axes.Axes.hist` / `matplotlib.pyplot.hist`
# - `matplotlib.axes.Axes.set_title`
# - `matplotlib.axes.Axes.set_xlabel`
# - `matplotlib.axes.Axes.set_ylabel`
# - `matplotlib.axes.Axes.legend`
|