File: histogram_normalization.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (257 lines) | stat: -rw-r--r-- 9,651 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""
.. redirect-from:: /gallery/statistics/histogram_features

===================================
Histogram bins, density, and weight
===================================

The `.Axes.hist` method can flexibly create histograms in a few different ways,
which is flexible and helpful, but can also lead to confusion.  In particular,
you can:

- bin the data as you want, either with an automatically chosen number of
  bins, or with fixed bin edges,
- normalize the histogram so that its integral is one,
- and assign weights to the data points, so that each data point affects the
  count in its bin differently.

The Matplotlib ``hist`` method calls `numpy.histogram` and plots the results,
therefore users should consult the numpy documentation for a definitive guide.

Histograms are created by defining bin edges, and taking a dataset of values
and sorting them into the bins, and counting or summing how much data is in
each bin.  In this simple example, 9 numbers between 1 and 4 are sorted into 3
bins:
"""

import matplotlib.pyplot as plt
import numpy as np

rng = np.random.default_rng(19680801)

xdata = np.array([1.2, 2.3, 3.3, 3.1, 1.7, 3.4, 2.1, 1.25, 1.3])
xbins = np.array([1, 2, 3, 4])

# changing the style of the histogram bars just to make it
# very clear where the boundaries of the bins are:
style = {'facecolor': 'none', 'edgecolor': 'C0', 'linewidth': 3}

fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, **style)

# plot the xdata locations on the x axis:
ax.plot(xdata, 0*xdata, 'd')
ax.set_ylabel('Number per bin')
ax.set_xlabel('x bins (dx=1.0)')

# %%
# Modifying bins
# ==============
#
# Changing the bin size changes the shape of this sparse histogram, so its a
# good idea to choose bins with some care with respect to your data.  Here we
# make the bins half as wide.

xbins = np.arange(1, 4.5, 0.5)

fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, **style)
ax.plot(xdata, 0*xdata, 'd')
ax.set_ylabel('Number per bin')
ax.set_xlabel('x bins (dx=0.5)')

# %%
# We can also let numpy (via Matplotlib) choose the bins automatically, or
# specify a number of bins to choose automatically:

fig, ax = plt.subplot_mosaic([['auto', 'n4']],
                             sharex=True, sharey=True, layout='constrained')

ax['auto'].hist(xdata, **style)
ax['auto'].plot(xdata, 0*xdata, 'd')
ax['auto'].set_ylabel('Number per bin')
ax['auto'].set_xlabel('x bins (auto)')

ax['n4'].hist(xdata, bins=4, **style)
ax['n4'].plot(xdata, 0*xdata, 'd')
ax['n4'].set_xlabel('x bins ("bins=4")')

# %%
# Normalizing histograms: density and weight
# ==========================================
#
# Counts-per-bin is the default length of each bar in the histogram.  However,
# we can also normalize the bar lengths as a probability density function using
# the ``density`` parameter:

fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, density=True, **style)
ax.set_ylabel('Probability density [$V^{-1}$])')
ax.set_xlabel('x bins (dx=0.5 $V$)')

# %%
# This normalization can be a little hard to interpret when just exploring the
# data. The value attached to each bar is divided by the total number of data
# points *and* the width of the bin, and thus the values _integrate_ to one
# when integrating across the full range of data.
# e.g. ::
#
#     density = counts / (sum(counts) * np.diff(bins))
#     np.sum(density * np.diff(bins)) == 1
#
# This normalization is how `probability density functions
# <https://en.wikipedia.org/wiki/Probability_density_function>`_ are defined in
# statistics.  If :math:`X` is a random variable on :math:`x`, then :math:`f_X`
# is is the probability density function if :math:`P[a<X<b] = \int_a^b f_X dx`.
# If the units of x are Volts, then the units of :math:`f_X` are :math:`V^{-1}`
# or probability per change in voltage.
#
# The usefulness of this normalization is a little more clear when we draw from
# a known distribution and try to compare with theory.  So, choose 1000 points
# from a `normal distribution
# <https://en.wikipedia.org/wiki/Normal_distribution>`_, and also calculate the
# known probability density function:

xdata = rng.normal(size=1000)
xpdf = np.arange(-4, 4, 0.1)
pdf = 1 / (np.sqrt(2 * np.pi)) * np.exp(-xpdf**2 / 2)

# %%
# If we don't use ``density=True``, we need to scale the expected probability
# distribution function by both the length of the data and the width of the
# bins:

fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')
dx = 0.1
xbins = np.arange(-4, 4, dx)
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label='Counts')

# scale and plot the expected pdf:
ax['False'].plot(xpdf, pdf * len(xdata) * dx, label=r'$N\,f_X(x)\,\delta x$')
ax['False'].set_ylabel('Count per bin')
ax['False'].set_xlabel('x bins [V]')
ax['False'].legend()

ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label='density')
ax['True'].plot(xpdf, pdf, label='$f_X(x)$')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend()

# %%
# One advantage of using the density is therefore that the shape and amplitude
# of the histogram does not depend on the size of the bins.  Consider an
# extreme case where the bins do not have the same width.  In this example, the
# bins below ``x=-1.25`` are six times wider than the rest of the bins.   By
# normalizing by density, we preserve the shape of the distribution, whereas if
# we do not, then the wider bins have much higher counts than the thinner bins:

fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')
dx = 0.1
xbins = np.hstack([np.arange(-4, -1.25, 6*dx), np.arange(-1.25, 4, dx)])
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label='Counts')
ax['False'].plot(xpdf, pdf * len(xdata) * dx, label=r'$N\,f_X(x)\,\delta x_0$')
ax['False'].set_ylabel('Count per bin')
ax['False'].set_xlabel('x bins [V]')
ax['False'].legend()

ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label='density')
ax['True'].plot(xpdf, pdf, label='$f_X(x)$')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend()

# %%
# Similarly, if we want to compare histograms with different bin widths, we may
# want to use ``density=True``:

fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')

# expected PDF
ax['True'].plot(xpdf, pdf, '--', label='$f_X(x)$', color='k')

for nn, dx in enumerate([0.1, 0.4, 1.2]):
    xbins = np.arange(-4, 4, dx)
    # expected histogram:
    ax['False'].plot(xpdf, pdf*1000*dx, '--', color=f'C{nn}')
    ax['False'].hist(xdata, bins=xbins, density=False, histtype='step')

    ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label=dx)

# Labels:
ax['False'].set_xlabel('x bins [$V$]')
ax['False'].set_ylabel('Count per bin')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend(fontsize='small', title='bin width:')

# %%
# Sometimes people want to normalize so that the sum of counts is one.  This is
# analogous to a `probability mass function
# <https://en.wikipedia.org/wiki/Probability_mass_function>`_ for a discrete
# variable where the sum of probabilities for all the values equals one.  Using
# ``hist``, we can get this normalization if we set the *weights* to 1/N.
# Note that the amplitude of this normalized histogram still depends on
# width and/or number of the bins:

fig, ax = plt.subplots(layout='constrained', figsize=(3.5, 3))

for nn, dx in enumerate([0.1, 0.4, 1.2]):
    xbins = np.arange(-4, 4, dx)
    ax.hist(xdata, bins=xbins, weights=1/len(xdata) * np.ones(len(xdata)),
                   histtype='step', label=f'{dx}')
ax.set_xlabel('x bins [$V$]')
ax.set_ylabel('Bin count / N')
ax.legend(fontsize='small', title='bin width:')

# %%
# The value of normalizing histograms is comparing two distributions that have
# different sized populations.  Here we compare the distribution of ``xdata``
# with a population of 1000, and ``xdata2`` with 100 members.

xdata2 = rng.normal(size=100)

fig, ax = plt.subplot_mosaic([['no_norm', 'density', 'weight']],
                             layout='constrained', figsize=(8, 4))

xbins = np.arange(-4, 4, 0.25)

ax['no_norm'].hist(xdata, bins=xbins, histtype='step')
ax['no_norm'].hist(xdata2, bins=xbins, histtype='step')
ax['no_norm'].set_ylabel('Counts')
ax['no_norm'].set_xlabel('x bins [$V$]')
ax['no_norm'].set_title('No normalization')

ax['density'].hist(xdata, bins=xbins, histtype='step', density=True)
ax['density'].hist(xdata2, bins=xbins, histtype='step', density=True)
ax['density'].set_ylabel('Probability density [$V^{-1}$]')
ax['density'].set_title('Density=True')
ax['density'].set_xlabel('x bins [$V$]')

ax['weight'].hist(xdata, bins=xbins, histtype='step',
                  weights=1 / len(xdata) * np.ones(len(xdata)),
                  label='N=1000')
ax['weight'].hist(xdata2, bins=xbins, histtype='step',
                  weights=1 / len(xdata2) * np.ones(len(xdata2)),
                  label='N=100')
ax['weight'].set_xlabel('x bins [$V$]')
ax['weight'].set_ylabel('Counts / N')
ax['weight'].legend(fontsize='small')
ax['weight'].set_title('Weight = 1/N')

plt.show()

# %%
#
# .. tags:: plot-type: histogram, domain: statistics
#
# .. admonition:: References
#
#    The use of the following functions, methods, classes and modules is shown
#    in this example:
#
#    - `matplotlib.axes.Axes.hist` / `matplotlib.pyplot.hist`
#    - `matplotlib.axes.Axes.set_title`
#    - `matplotlib.axes.Axes.set_xlabel`
#    - `matplotlib.axes.Axes.set_ylabel`
#    - `matplotlib.axes.Axes.legend`