File: violinplot.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (116 lines) | stat: -rw-r--r-- 4,952 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
==================
Violin plot basics
==================

Violin plots are similar to histograms and box plots in that they show
an abstract representation of the probability distribution of the
sample. Rather than showing counts of data points that fall into bins
or order statistics, violin plots use kernel density estimation (KDE) to
compute an empirical distribution of the sample. That computation
is controlled by several parameters. This example demonstrates how to
modify the number of points at which the KDE is evaluated (``points``)
and how to modify the bandwidth of the KDE (``bw_method``).

For more information on violin plots and KDE, the scikit-learn docs
have a great section: https://scikit-learn.org/stable/modules/density.html
"""

import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)


# fake data
fs = 10  # fontsize
pos = [1, 2, 4, 5, 7, 8]
data = [np.random.normal(0, std, size=100) for std in pos]

fig, axs = plt.subplots(nrows=2, ncols=6, figsize=(10, 4))

axs[0, 0].violinplot(data, pos, points=20, widths=0.3,
                     showmeans=True, showextrema=True, showmedians=True)
axs[0, 0].set_title('Custom violin 1', fontsize=fs)

axs[0, 1].violinplot(data, pos, points=40, widths=0.5,
                     showmeans=True, showextrema=True, showmedians=True,
                     bw_method='silverman')
axs[0, 1].set_title('Custom violin 2', fontsize=fs)

axs[0, 2].violinplot(data, pos, points=60, widths=0.7, showmeans=True,
                     showextrema=True, showmedians=True, bw_method=0.5)
axs[0, 2].set_title('Custom violin 3', fontsize=fs)

axs[0, 3].violinplot(data, pos, points=60, widths=0.7, showmeans=True,
                     showextrema=True, showmedians=True, bw_method=0.5,
                     quantiles=[[0.1], [], [], [0.175, 0.954], [0.75], [0.25]])
axs[0, 3].set_title('Custom violin 4', fontsize=fs)

axs[0, 4].violinplot(data[-1:], pos[-1:], points=60, widths=0.7,
                     showmeans=True, showextrema=True, showmedians=True,
                     quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5)
axs[0, 4].set_title('Custom violin 5', fontsize=fs)

axs[0, 5].violinplot(data[-1:], pos[-1:], points=60, widths=0.7,
                     showmeans=True, showextrema=True, showmedians=True,
                     quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5, side='low')

axs[0, 5].violinplot(data[-1:], pos[-1:], points=60, widths=0.7,
                     showmeans=True, showextrema=True, showmedians=True,
                     quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5, side='high')
axs[0, 5].set_title('Custom violin 6', fontsize=fs)

axs[1, 0].violinplot(data, pos, points=80, orientation='horizontal', widths=0.7,
                     showmeans=True, showextrema=True, showmedians=True)
axs[1, 0].set_title('Custom violin 7', fontsize=fs)

axs[1, 1].violinplot(data, pos, points=100, orientation='horizontal', widths=0.9,
                     showmeans=True, showextrema=True, showmedians=True,
                     bw_method='silverman')
axs[1, 1].set_title('Custom violin 8', fontsize=fs)

axs[1, 2].violinplot(data, pos, points=200, orientation='horizontal', widths=1.1,
                     showmeans=True, showextrema=True, showmedians=True,
                     bw_method=0.5)
axs[1, 2].set_title('Custom violin 9', fontsize=fs)

axs[1, 3].violinplot(data, pos, points=200, orientation='horizontal', widths=1.1,
                     showmeans=True, showextrema=True, showmedians=True,
                     quantiles=[[0.1], [], [], [0.175, 0.954], [0.75], [0.25]],
                     bw_method=0.5)
axs[1, 3].set_title('Custom violin 10', fontsize=fs)

axs[1, 4].violinplot(data[-1:], pos[-1:], points=200, orientation='horizontal',
                     widths=1.1, showmeans=True, showextrema=True, showmedians=True,
                     quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5)
axs[1, 4].set_title('Custom violin 11', fontsize=fs)

axs[1, 5].violinplot(data[-1:], pos[-1:], points=200, orientation='horizontal',
                     widths=1.1, showmeans=True, showextrema=True, showmedians=True,
                     quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5, side='low')

axs[1, 5].violinplot(data[-1:], pos[-1:], points=200, orientation='horizontal',
                     widths=1.1, showmeans=True, showextrema=True, showmedians=True,
                     quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5, side='high')
axs[1, 5].set_title('Custom violin 12', fontsize=fs)


for ax in axs.flat:
    ax.set_yticklabels([])

fig.suptitle("Violin Plotting Examples")
fig.subplots_adjust(hspace=0.4)
plt.show()

# %%
#
# .. tags:: plot-type: violin, domain: statistics
#
# .. admonition:: References
#
#    The use of the following functions, methods, classes and modules is shown
#    in this example:
#
#    - `matplotlib.axes.Axes.violinplot` / `matplotlib.pyplot.violinplot`