File: date.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (64 lines) | stat: -rw-r--r-- 2,612 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
================
Date tick labels
================

Matplotlib date plotting is done by converting date instances into
days since an epoch (by default 1970-01-01T00:00:00). The
:mod:`matplotlib.dates` module provides the converter functions `.date2num`
and `.num2date` that convert `datetime.datetime` and `numpy.datetime64`
objects to and from Matplotlib's internal representation.  These data
types are registered with the unit conversion mechanism described in
:mod:`matplotlib.units`, so the conversion happens automatically for the user.
The registration process also sets the default tick ``locator`` and
``formatter`` for the axis to be `~.matplotlib.dates.AutoDateLocator` and
`~.matplotlib.dates.AutoDateFormatter`.

An alternative formatter is the `~.dates.ConciseDateFormatter`,
used in the second ``Axes`` below (see
:doc:`/gallery/ticks/date_concise_formatter`), which often removes the need to
rotate the tick labels. The last ``Axes`` formats the dates manually, using
`~.dates.DateFormatter` to format the dates using the format strings documented
at `datetime.date.strftime`.
"""

import matplotlib.pyplot as plt

import matplotlib.cbook as cbook
import matplotlib.dates as mdates

# Load a numpy record array from yahoo csv data with fields date, open, high,
# low, close, volume, adj_close from the mpl-data/sample_data directory. The
# record array stores the date as an np.datetime64 with a day unit ('D') in
# the date column.
data = cbook.get_sample_data('goog.npz')['price_data']

fig, axs = plt.subplots(3, 1, figsize=(6.4, 7), layout='constrained')
# common to all three:
for ax in axs:
    ax.plot('date', 'adj_close', data=data)
    # Major ticks every half year, minor ticks every month,
    ax.xaxis.set_major_locator(mdates.MonthLocator(bymonth=(1, 7)))
    ax.xaxis.set_minor_locator(mdates.MonthLocator())
    ax.grid(True)
    ax.set_ylabel(r'Price [\$]')

# different formats:
ax = axs[0]
ax.set_title('DefaultFormatter', loc='left', y=0.85, x=0.02, fontsize='medium')

ax = axs[1]
ax.set_title('ConciseFormatter', loc='left', y=0.85, x=0.02, fontsize='medium')
ax.xaxis.set_major_formatter(
    mdates.ConciseDateFormatter(ax.xaxis.get_major_locator()))

ax = axs[2]
ax.set_title('Manual DateFormatter', loc='left', y=0.85, x=0.02,
             fontsize='medium')
# Text in the x-axis will be displayed in 'YYYY-mm' format.
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%b'))
# Rotates and right-aligns the x labels so they don't crowd each other.
for label in ax.get_xticklabels(which='major'):
    label.set(rotation=30, horizontalalignment='right')

plt.show()