1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
"""
mplcvd -- an example of figure hook
===================================
To use this hook, ensure that this module is in your ``PYTHONPATH``, and set
``rcParams["figure.hooks"] = ["mplcvd:setup"]``. This hook depends on
the ``colorspacious`` third-party module.
"""
import functools
from pathlib import Path
import colorspacious
import numpy as np
_BUTTON_NAME = "Filter"
_BUTTON_HELP = "Simulate color vision deficiencies"
_MENU_ENTRIES = {
"None": None,
"Greyscale": "greyscale",
"Deuteranopia": "deuteranomaly",
"Protanopia": "protanomaly",
"Tritanopia": "tritanomaly",
}
def _get_color_filter(name):
"""
Given a color filter name, create a color filter function.
Parameters
----------
name : str
The color filter name, one of the following:
- ``"none"``: ...
- ``"greyscale"``: Convert the input to luminosity.
- ``"deuteranopia"``: Simulate the most common form of red-green
colorblindness.
- ``"protanopia"``: Simulate a rarer form of red-green colorblindness.
- ``"tritanopia"``: Simulate the rare form of blue-yellow
colorblindness.
Color conversions use `colorspacious`_.
Returns
-------
callable
A color filter function that has the form:
def filter(input: np.ndarray[M, N, D])-> np.ndarray[M, N, D]
where (M, N) are the image dimensions, and D is the color depth (3 for
RGB, 4 for RGBA). Alpha is passed through unchanged and otherwise
ignored.
"""
if name not in _MENU_ENTRIES:
raise ValueError(f"Unsupported filter name: {name!r}")
name = _MENU_ENTRIES[name]
if name is None:
return None
elif name == "greyscale":
rgb_to_jch = colorspacious.cspace_converter("sRGB1", "JCh")
jch_to_rgb = colorspacious.cspace_converter("JCh", "sRGB1")
def convert(im):
greyscale_JCh = rgb_to_jch(im)
greyscale_JCh[..., 1] = 0
im = jch_to_rgb(greyscale_JCh)
return im
else:
cvd_space = {"name": "sRGB1+CVD", "cvd_type": name, "severity": 100}
convert = colorspacious.cspace_converter(cvd_space, "sRGB1")
def filter_func(im, dpi):
alpha = None
if im.shape[-1] == 4:
im, alpha = im[..., :3], im[..., 3]
im = convert(im)
if alpha is not None:
im = np.dstack((im, alpha))
return np.clip(im, 0, 1), 0, 0
return filter_func
def _set_menu_entry(tb, name):
tb.canvas.figure.set_agg_filter(_get_color_filter(name))
tb.canvas.draw_idle()
def setup(figure):
tb = figure.canvas.toolbar
if tb is None:
return
for cls in type(tb).__mro__:
pkg = cls.__module__.split(".")[0]
if pkg != "matplotlib":
break
if pkg == "gi":
_setup_gtk(tb)
elif pkg in ("PyQt5", "PySide2", "PyQt6", "PySide6"):
_setup_qt(tb)
elif pkg == "tkinter":
_setup_tk(tb)
elif pkg == "wx":
_setup_wx(tb)
else:
raise NotImplementedError("The current backend is not supported")
def _setup_gtk(tb):
from gi.repository import Gio, GLib, Gtk
for idx in range(tb.get_n_items()):
children = tb.get_nth_item(idx).get_children()
if children and isinstance(children[0], Gtk.Label):
break
toolitem = Gtk.SeparatorToolItem()
tb.insert(toolitem, idx)
image = Gtk.Image.new_from_gicon(
Gio.Icon.new_for_string(
str(Path(__file__).parent / "images/eye-symbolic.svg")),
Gtk.IconSize.LARGE_TOOLBAR)
# The type of menu is progressively downgraded depending on GTK version.
if Gtk.check_version(3, 6, 0) is None:
group = Gio.SimpleActionGroup.new()
action = Gio.SimpleAction.new_stateful("cvdsim",
GLib.VariantType("s"),
GLib.Variant("s", "none"))
group.add_action(action)
@functools.partial(action.connect, "activate")
def set_filter(action, parameter):
_set_menu_entry(tb, parameter.get_string())
action.set_state(parameter)
menu = Gio.Menu()
for name in _MENU_ENTRIES:
menu.append(name, f"local.cvdsim::{name}")
button = Gtk.MenuButton.new()
button.remove(button.get_children()[0])
button.add(image)
button.insert_action_group("local", group)
button.set_menu_model(menu)
button.get_style_context().add_class("flat")
item = Gtk.ToolItem()
item.add(button)
tb.insert(item, idx + 1)
else:
menu = Gtk.Menu()
group = []
for name in _MENU_ENTRIES:
item = Gtk.RadioMenuItem.new_with_label(group, name)
item.set_active(name == "None")
item.connect(
"activate", lambda item: _set_menu_entry(tb, item.get_label()))
group.append(item)
menu.append(item)
menu.show_all()
tbutton = Gtk.MenuToolButton.new(image, _BUTTON_NAME)
tbutton.set_menu(menu)
tb.insert(tbutton, idx + 1)
tb.show_all()
def _setup_qt(tb):
from matplotlib.backends.qt_compat import QtGui, QtWidgets
menu = QtWidgets.QMenu()
try:
QActionGroup = QtGui.QActionGroup # Qt6
except AttributeError:
QActionGroup = QtWidgets.QActionGroup # Qt5
group = QActionGroup(menu)
group.triggered.connect(lambda action: _set_menu_entry(tb, action.text()))
for name in _MENU_ENTRIES:
action = menu.addAction(name)
action.setCheckable(True)
action.setActionGroup(group)
action.setChecked(name == "None")
actions = tb.actions()
before = next(
(action for action in actions
if isinstance(tb.widgetForAction(action), QtWidgets.QLabel)), None)
tb.insertSeparator(before)
button = QtWidgets.QToolButton()
# FIXME: _icon needs public API.
button.setIcon(tb._icon(str(Path(__file__).parent / "images/eye.png")))
button.setText(_BUTTON_NAME)
button.setToolTip(_BUTTON_HELP)
button.setPopupMode(QtWidgets.QToolButton.ToolButtonPopupMode.InstantPopup)
button.setMenu(menu)
tb.insertWidget(before, button)
def _setup_tk(tb):
import tkinter as tk
tb._Spacer() # FIXME: _Spacer needs public API.
button = tk.Menubutton(master=tb, relief="raised")
button._image_file = str(Path(__file__).parent / "images/eye.png")
# FIXME: _set_image_for_button needs public API (perhaps like _icon).
tb._set_image_for_button(button)
button.pack(side=tk.LEFT)
menu = tk.Menu(master=button, tearoff=False)
for name in _MENU_ENTRIES:
menu.add("radiobutton", label=name,
command=lambda _name=name: _set_menu_entry(tb, _name))
menu.invoke(0)
button.config(menu=menu)
def _setup_wx(tb):
import wx
idx = next(idx for idx in range(tb.ToolsCount)
if tb.GetToolByPos(idx).IsStretchableSpace())
tb.InsertSeparator(idx)
tool = tb.InsertTool(
idx + 1, -1, _BUTTON_NAME,
# FIXME: _icon needs public API.
tb._icon(str(Path(__file__).parent / "images/eye.png")),
# FIXME: ITEM_DROPDOWN is not supported on macOS.
kind=wx.ITEM_DROPDOWN, shortHelp=_BUTTON_HELP)
menu = wx.Menu()
for name in _MENU_ENTRIES:
item = menu.AppendRadioItem(-1, name)
menu.Bind(
wx.EVT_MENU,
lambda event, _name=name: _set_menu_entry(tb, _name),
id=item.Id,
)
tb.SetDropdownMenu(tool.Id, menu)
if __name__ == '__main__':
import matplotlib.pyplot as plt
from matplotlib import cbook
plt.rcParams['figure.hooks'].append('mplcvd:setup')
fig, axd = plt.subplot_mosaic(
[
['viridis', 'turbo'],
['photo', 'lines']
]
)
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
imv = axd['viridis'].imshow(
Z, interpolation='bilinear',
origin='lower', extent=[-3, 3, -3, 3],
vmax=abs(Z).max(), vmin=-abs(Z).max()
)
fig.colorbar(imv)
imt = axd['turbo'].imshow(
Z, interpolation='bilinear', cmap='turbo',
origin='lower', extent=[-3, 3, -3, 3],
vmax=abs(Z).max(), vmin=-abs(Z).max()
)
fig.colorbar(imt)
# A sample image
with cbook.get_sample_data('grace_hopper.jpg') as image_file:
photo = plt.imread(image_file)
axd['photo'].imshow(photo)
th = np.linspace(0, 2*np.pi, 1024)
for j in [1, 2, 4, 6]:
axd['lines'].plot(th, np.sin(th * j), label=f'$\\omega={j}$')
axd['lines'].legend(ncols=2, loc='upper right')
plt.show()
|