1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
"""
.. redirect-from:: /tutorials/intermediate/artists
.. _artists_tutorial:
===============
Artist tutorial
===============
Using Artist objects to render on the canvas.
There are three layers to the Matplotlib API.
* the :class:`!matplotlib.backend_bases.FigureCanvas` is the area onto which
the figure is drawn
* the :class:`!matplotlib.backend_bases.Renderer` is the object which knows how
to draw on the :class:`!matplotlib.backend_bases.FigureCanvas`
* and the :class:`matplotlib.artist.Artist` is the object that knows how to use
a renderer to paint onto the canvas.
The :class:`!matplotlib.backend_bases.FigureCanvas` and
:class:`!matplotlib.backend_bases.Renderer` handle all the details of
talking to user interface toolkits like `wxPython
<https://www.wxpython.org>`_ or drawing languages like PostScript®, and
the ``Artist`` handles all the high level constructs like representing
and laying out the figure, text, and lines. The typical user will
spend 95% of their time working with the ``Artists``.
There are two types of ``Artists``: primitives and containers. The primitives
represent the standard graphical objects we want to paint onto our canvas:
:class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.patches.Rectangle`,
:class:`~matplotlib.text.Text`, :class:`~matplotlib.image.AxesImage`, etc., and
the containers are places to put them (:class:`~matplotlib.axis.Axis`,
:class:`~matplotlib.axes.Axes` and :class:`~matplotlib.figure.Figure`). The
standard use is to create a :class:`~matplotlib.figure.Figure` instance, use
the ``Figure`` to create one or more :class:`~matplotlib.axes.Axes`
instances, and use the ``Axes`` instance
helper methods to create the primitives. In the example below, we create a
``Figure`` instance using :func:`matplotlib.pyplot.figure`, which is a
convenience method for instantiating ``Figure`` instances and connecting them
with your user interface or drawing toolkit ``FigureCanvas``. As we will
discuss below, this is not necessary -- you can work directly with PostScript,
PDF Gtk+, or wxPython ``FigureCanvas`` instances, instantiate your ``Figures``
directly and connect them yourselves -- but since we are focusing here on the
``Artist`` API we'll let :mod:`~matplotlib.pyplot` handle some of those details
for us::
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1) # two rows, one column, first plot
The :class:`~matplotlib.axes.Axes` is probably the most important
class in the Matplotlib API, and the one you will be working with most
of the time. This is because the ``Axes`` is the plotting area into
which most of the objects go, and the ``Axes`` has many special helper
methods (:meth:`~matplotlib.axes.Axes.plot`,
:meth:`~matplotlib.axes.Axes.text`,
:meth:`~matplotlib.axes.Axes.hist`,
:meth:`~matplotlib.axes.Axes.imshow`) to create the most common
graphics primitives (:class:`~matplotlib.lines.Line2D`,
:class:`~matplotlib.text.Text`,
:class:`~matplotlib.patches.Rectangle`,
:class:`~matplotlib.image.AxesImage`, respectively). These helper methods
will take your data (e.g., ``numpy`` arrays and strings) and create
primitive ``Artist`` instances as needed (e.g., ``Line2D``), add them to
the relevant containers, and draw them when requested. If you want to create
an ``Axes`` at an arbitrary location, simply use the
:meth:`~matplotlib.figure.Figure.add_axes` method which takes a list
of ``[left, bottom, width, height]`` values in 0-1 relative figure
coordinates::
fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])
Continuing with our example::
import numpy as np
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax.plot(t, s, color='blue', lw=2)
In this example, ``ax`` is the ``Axes`` instance created by the
``fig.add_subplot`` call above and when you call ``ax.plot``, it creates a
``Line2D`` instance and
adds it to the ``Axes``. In the interactive `IPython <https://ipython.org/>`_
session below, you can see that the ``Axes.lines`` list is length one and
contains the same line that was returned by the ``line, = ax.plot...`` call:
.. sourcecode:: ipython
In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D at 0x19a95710>
In [102]: line
Out[102]: <matplotlib.lines.Line2D at 0x19a95710>
If you make subsequent calls to ``ax.plot`` (and the hold state is "on"
which is the default) then additional lines will be added to the list.
You can remove a line later by calling its ``remove`` method::
line = ax.lines[0]
line.remove()
The Axes also has helper methods to configure and decorate the x-axis
and y-axis tick, tick labels and axis labels::
xtext = ax.set_xlabel('my xdata') # returns a Text instance
ytext = ax.set_ylabel('my ydata')
When you call :meth:`ax.set_xlabel <matplotlib.axes.Axes.set_xlabel>`,
it passes the information on the :class:`~matplotlib.text.Text`
instance of the :class:`~matplotlib.axis.XAxis`. Each ``Axes``
instance contains an :class:`~matplotlib.axis.XAxis` and a
:class:`~matplotlib.axis.YAxis` instance, which handle the layout and
drawing of the ticks, tick labels and axis labels.
Try creating the figure below.
"""
# sphinx_gallery_capture_repr = ('__repr__',)
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
fig.subplots_adjust(top=0.8)
ax1 = fig.add_subplot(211)
ax1.set_ylabel('Voltage [V]')
ax1.set_title('A sine wave')
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax1.plot(t, s, color='blue', lw=2)
# Fixing random state for reproducibility
np.random.seed(19680801)
ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])
n, bins, patches = ax2.hist(np.random.randn(1000), 50,
facecolor='yellow', edgecolor='yellow')
ax2.set_xlabel('Time [s]')
plt.show()
# %%
# .. _customizing-artists:
#
# Customizing your objects
# ========================
#
# Every element in the figure is represented by a Matplotlib
# :class:`~matplotlib.artist.Artist`, and each has an extensive list of
# properties to configure its appearance. The figure itself contains a
# :class:`~matplotlib.patches.Rectangle` exactly the size of the figure,
# which you can use to set the background color and transparency of the
# figures. Likewise, each :class:`~matplotlib.axes.Axes` bounding box
# (the standard white box with black edges in the typical Matplotlib
# plot, has a ``Rectangle`` instance that determines the color,
# transparency, and other properties of the Axes. These instances are
# stored as member variables :attr:`!Figure.patch` and :attr:`!Axes.patch`
# ("Patch" is a name inherited from MATLAB, and is a 2D "patch"
# of color on the figure, e.g., rectangles, circles and polygons).
# Every Matplotlib ``Artist`` has the following properties
#
# ========== =================================================================
# Property Description
# ========== =================================================================
# alpha The transparency - a scalar from 0-1
# animated A boolean that is used to facilitate animated drawing
# axes The Axes that the Artist lives in, possibly None
# clip_box The bounding box that clips the Artist
# clip_on Whether clipping is enabled
# clip_path The path the artist is clipped to
# contains A picking function to test whether the artist contains the pick
# point
# figure The figure instance the artist lives in, possibly None
# label A text label (e.g., for auto-labeling)
# picker A python object that controls object picking
# transform The transformation
# visible A boolean whether the artist should be drawn
# zorder A number which determines the drawing order
# rasterized Boolean; Turns vectors into raster graphics (for compression &
# EPS transparency)
# ========== =================================================================
#
# Each of the properties is accessed with an old-fashioned setter or
# getter (yes we know this irritates Pythonistas and we plan to support
# direct access via properties or traits but it hasn't been done yet).
# For example, to multiply the current alpha by a half::
#
# a = o.get_alpha()
# o.set_alpha(0.5*a)
#
# If you want to set a number of properties at once, you can also use
# the ``set`` method with keyword arguments. For example::
#
# o.set(alpha=0.5, zorder=2)
#
# If you are working interactively at the python shell, a handy way to
# inspect the ``Artist`` properties is to use the
# :func:`matplotlib.artist.getp` function (simply
# :func:`~matplotlib.pyplot.getp` in pyplot), which lists the properties
# and their values. This works for classes derived from ``Artist`` as
# well, e.g., ``Figure`` and ``Rectangle``. Here are the ``Figure`` rectangle
# properties mentioned above:
#
# .. sourcecode:: ipython
#
# In [149]: matplotlib.artist.getp(fig.patch)
# agg_filter = None
# alpha = None
# animated = False
# antialiased or aa = False
# bbox = Bbox(x0=0.0, y0=0.0, x1=1.0, y1=1.0)
# capstyle = butt
# children = []
# clip_box = None
# clip_on = True
# clip_path = None
# contains = None
# data_transform = BboxTransformTo( TransformedBbox( Bbox...
# edgecolor or ec = (1.0, 1.0, 1.0, 1.0)
# extents = Bbox(x0=0.0, y0=0.0, x1=640.0, y1=480.0)
# facecolor or fc = (1.0, 1.0, 1.0, 1.0)
# figure = Figure(640x480)
# fill = True
# gid = None
# hatch = None
# height = 1
# in_layout = False
# joinstyle = miter
# label =
# linestyle or ls = solid
# linewidth or lw = 0.0
# patch_transform = CompositeGenericTransform( BboxTransformTo( ...
# path = Path(array([[0., 0.], [1., 0.], [1.,...
# path_effects = []
# picker = None
# rasterized = None
# sketch_params = None
# snap = None
# transform = CompositeGenericTransform( CompositeGenericTra...
# transformed_clip_path_and_affine = (None, None)
# url = None
# verts = [[ 0. 0.] [640. 0.] [640. 480.] [ 0. 480....
# visible = True
# width = 1
# window_extent = Bbox(x0=0.0, y0=0.0, x1=640.0, y1=480.0)
# x = 0
# xy = (0, 0)
# y = 0
# zorder = 1
#
# The docstrings for all of the classes also contain the ``Artist``
# properties, so you can consult the interactive "help" or the
# :ref:`artist-api` for a listing of properties for a given object.
#
# .. _object-containers:
#
# Object containers
# =================
#
#
# Now that we know how to inspect and set the properties of a given
# object we want to configure, we need to know how to get at that object.
# As mentioned in the introduction, there are two kinds of objects:
# primitives and containers. The primitives are usually the things you
# want to configure (the font of a :class:`~matplotlib.text.Text`
# instance, the width of a :class:`~matplotlib.lines.Line2D`) although
# the containers also have some properties as well -- for example the
# :class:`~matplotlib.axes.Axes` :class:`~matplotlib.artist.Artist` is a
# container that contains many of the primitives in your plot, but it
# also has properties like the ``xscale`` to control whether the xaxis
# is 'linear' or 'log'. In this section we'll review where the various
# container objects store the ``Artists`` that you want to get at.
#
# .. _figure-container:
#
# Figure container
# ----------------
#
# The top level container ``Artist`` is the
# :class:`matplotlib.figure.Figure`, and it contains everything in the
# figure. The background of the figure is a
# :class:`~matplotlib.patches.Rectangle` which is stored in
# :attr:`!Figure.patch`. As
# you add subplots (:meth:`~matplotlib.figure.Figure.add_subplot`) and
# Axes (:meth:`~matplotlib.figure.Figure.add_axes`) to the figure
# these will be appended to the :attr:`Figure.axes
# <matplotlib.figure.Figure.axes>`. These are also returned by the
# methods that create them:
#
# .. sourcecode:: ipython
#
# In [156]: fig = plt.figure()
#
# In [157]: ax1 = fig.add_subplot(211)
#
# In [158]: ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3])
#
# In [159]: ax1
# Out[159]: <Axes:>
#
# In [160]: print(fig.axes)
# [<Axes:>, <matplotlib.axes._axes.Axes object at 0x7f0768702be0>]
#
# Because the figure maintains the concept of the "current Axes" (see
# :meth:`Figure.gca <matplotlib.figure.Figure.gca>` and
# :meth:`Figure.sca <matplotlib.figure.Figure.sca>`) to support the
# pylab/pyplot state machine, you should not insert or remove Axes
# directly from the Axes list, but rather use the
# :meth:`~matplotlib.figure.Figure.add_subplot` and
# :meth:`~matplotlib.figure.Figure.add_axes` methods to insert, and the
# `Axes.remove <matplotlib.artist.Artist.remove>` method to delete. You are
# free however, to iterate over the list of Axes or index into it to get
# access to ``Axes`` instances you want to customize. Here is an
# example which turns all the Axes grids on::
#
# for ax in fig.axes:
# ax.grid(True)
#
#
# The figure also has its own ``images``, ``lines``, ``patches`` and ``text``
# attributes, which you can use to add primitives directly. When doing so, the
# default coordinate system for the ``Figure`` will simply be in pixels (which
# is not usually what you want). If you instead use Figure-level methods to add
# Artists (e.g., using `.Figure.text` to add text), then the default coordinate
# system will be "figure coordinates" where (0, 0) is the bottom-left of the
# figure and (1, 1) is the top-right of the figure.
#
# As with all ``Artist``\s, you can control this coordinate system by setting
# the transform property. You can explicitly use "figure coordinates" by
# setting the ``Artist`` transform to :attr:`!fig.transFigure`:
import matplotlib.lines as lines
fig = plt.figure()
l1 = lines.Line2D([0, 1], [0, 1], transform=fig.transFigure, figure=fig)
l2 = lines.Line2D([0, 1], [1, 0], transform=fig.transFigure, figure=fig)
fig.lines.extend([l1, l2])
plt.show()
# %%
# Here is a summary of the Artists the Figure contains
#
# ================ ============================================================
# Figure attribute Description
# ================ ============================================================
# axes A list of `~.axes.Axes` instances
# patch The `.Rectangle` background
# images A list of `.FigureImage` patches -
# useful for raw pixel display
# legends A list of Figure `.Legend` instances
# (different from ``Axes.get_legend()``)
# lines A list of Figure `.Line2D` instances
# (rarely used, see ``Axes.lines``)
# patches A list of Figure `.Patch`\s
# (rarely used, see ``Axes.patches``)
# texts A list Figure `.Text` instances
# ================ ============================================================
#
# .. _axes-container:
#
# Axes container
# --------------
#
# The :class:`matplotlib.axes.Axes` is the center of the Matplotlib
# universe -- it contains the vast majority of all the ``Artists`` used
# in a figure with many helper methods to create and add these
# ``Artists`` to itself, as well as helper methods to access and
# customize the ``Artists`` it contains. Like the
# :class:`~matplotlib.figure.Figure`, it contains a
# :class:`~matplotlib.patches.Patch`
# :attr:`!matplotlib.axes.Axes.patch` which is a
# :class:`~matplotlib.patches.Rectangle` for Cartesian coordinates and a
# :class:`~matplotlib.patches.Circle` for polar coordinates; this patch
# determines the shape, background and border of the plotting region::
#
# ax = fig.add_subplot()
# rect = ax.patch # a Rectangle instance
# rect.set_facecolor('green')
#
# When you call a plotting method, e.g., the canonical
# `~matplotlib.axes.Axes.plot` and pass in arrays or lists of values, the
# method will create a `matplotlib.lines.Line2D` instance, update the line with
# all the ``Line2D`` properties passed as keyword arguments, add the line to
# the ``Axes``, and return it to you:
#
# .. sourcecode:: ipython
#
# In [213]: x, y = np.random.rand(2, 100)
#
# In [214]: line, = ax.plot(x, y, '-', color='blue', linewidth=2)
#
# ``plot`` returns a list of lines because you can pass in multiple x, y
# pairs to plot, and we are unpacking the first element of the length
# one list into the line variable. The line has been added to the
# ``Axes.lines`` list:
#
# .. sourcecode:: ipython
#
# In [229]: print(ax.lines)
# [<matplotlib.lines.Line2D at 0xd378b0c>]
#
# Similarly, methods that create patches, like
# :meth:`~matplotlib.axes.Axes.bar` creates a list of rectangles, will
# add the patches to the :attr:`!Axes.patches` list:
#
# .. sourcecode:: ipython
#
# In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50)
#
# In [234]: rectangles
# Out[234]: <BarContainer object of 50 artists>
#
# In [235]: print(len(ax.patches))
# Out[235]: 50
#
# You should not add objects directly to the ``Axes.lines`` or ``Axes.patches``
# lists, because the ``Axes`` needs to do a few things when it creates and adds
# an object:
#
# - It sets the ``figure`` and ``axes`` property of the ``Artist``;
# - It sets the default ``Axes`` transformation (unless one is already set);
# - It inspects the data contained in the ``Artist`` to update the data
# structures controlling auto-scaling, so that the view limits can be
# adjusted to contain the plotted data.
#
# You can, nonetheless, create objects yourself and add them directly to the
# ``Axes`` using helper methods like `~matplotlib.axes.Axes.add_line` and
# `~matplotlib.axes.Axes.add_patch`. Here is an annotated interactive session
# illustrating what is going on:
#
# .. sourcecode:: ipython
#
# In [262]: fig, ax = plt.subplots()
#
# # create a rectangle instance
# In [263]: rect = matplotlib.patches.Rectangle((1, 1), width=5, height=12)
#
# # by default the Axes instance is None
# In [264]: print(rect.axes)
# None
#
# # and the transformation instance is set to the "identity transform"
# In [265]: print(rect.get_data_transform())
# IdentityTransform()
#
# # now we add the Rectangle to the Axes
# In [266]: ax.add_patch(rect)
#
# # and notice that the ax.add_patch method has set the Axes
# # instance
# In [267]: print(rect.axes)
# Axes(0.125,0.1;0.775x0.8)
#
# # and the transformation has been set too
# In [268]: print(rect.get_data_transform())
# CompositeGenericTransform(
# TransformWrapper(
# BlendedAffine2D(
# IdentityTransform(),
# IdentityTransform())),
# CompositeGenericTransform(
# BboxTransformFrom(
# TransformedBbox(
# Bbox(x0=0.0, y0=0.0, x1=1.0, y1=1.0),
# TransformWrapper(
# BlendedAffine2D(
# IdentityTransform(),
# IdentityTransform())))),
# BboxTransformTo(
# TransformedBbox(
# Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
# BboxTransformTo(
# TransformedBbox(
# Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
# Affine2D(
# [[100. 0. 0.]
# [ 0. 100. 0.]
# [ 0. 0. 1.]])))))))
#
# # the default Axes transformation is ax.transData
# In [269]: print(ax.transData)
# CompositeGenericTransform(
# TransformWrapper(
# BlendedAffine2D(
# IdentityTransform(),
# IdentityTransform())),
# CompositeGenericTransform(
# BboxTransformFrom(
# TransformedBbox(
# Bbox(x0=0.0, y0=0.0, x1=1.0, y1=1.0),
# TransformWrapper(
# BlendedAffine2D(
# IdentityTransform(),
# IdentityTransform())))),
# BboxTransformTo(
# TransformedBbox(
# Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
# BboxTransformTo(
# TransformedBbox(
# Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
# Affine2D(
# [[100. 0. 0.]
# [ 0. 100. 0.]
# [ 0. 0. 1.]])))))))
#
# # notice that the xlimits of the Axes have not been changed
# In [270]: print(ax.get_xlim())
# (0.0, 1.0)
#
# # but the data limits have been updated to encompass the rectangle
# In [271]: print(ax.dataLim.bounds)
# (1.0, 1.0, 5.0, 12.0)
#
# # we can manually invoke the auto-scaling machinery
# In [272]: ax.autoscale_view()
#
# # and now the xlim are updated to encompass the rectangle, plus margins
# In [273]: print(ax.get_xlim())
# (0.75, 6.25)
#
# # we have to manually force a figure draw
# In [274]: fig.canvas.draw()
#
#
# There are many, many ``Axes`` helper methods for creating primitive
# ``Artists`` and adding them to their respective containers. The table
# below summarizes a small sampling of them, the kinds of ``Artist`` they
# create, and where they store them
#
# ========================================= ================= ===============
# Axes helper method Artist Container
# ========================================= ================= ===============
# `~.axes.Axes.annotate` - text annotations `.Annotation` ax.texts
# `~.axes.Axes.bar` - bar charts `.Rectangle` ax.patches
# `~.axes.Axes.errorbar` - error bar plots `.Line2D` and ax.lines and
# `.Rectangle` ax.patches
# `~.axes.Axes.fill` - shared area `.Polygon` ax.patches
# `~.axes.Axes.hist` - histograms `.Rectangle` ax.patches
# `~.axes.Axes.imshow` - image data `.AxesImage` ax.images
# `~.axes.Axes.legend` - Axes legend `.Legend` ax.get_legend()
# `~.axes.Axes.plot` - xy plots `.Line2D` ax.lines
# `~.axes.Axes.scatter` - scatter charts `.PolyCollection` ax.collections
# `~.axes.Axes.text` - text `.Text` ax.texts
# ========================================= ================= ===============
#
#
# In addition to all of these ``Artists``, the ``Axes`` contains two
# important ``Artist`` containers: the :class:`~matplotlib.axis.XAxis`
# and :class:`~matplotlib.axis.YAxis`, which handle the drawing of the
# ticks and labels. These are stored as instance variables
# :attr:`!matplotlib.axes.Axes.xaxis` and
# :attr:`!matplotlib.axes.Axes.yaxis`. The ``XAxis`` and ``YAxis``
# containers will be detailed below, but note that the ``Axes`` contains
# many helper methods which forward calls on to the
# :class:`~matplotlib.axis.Axis` instances, so you often do not need to
# work with them directly unless you want to. For example, you can set
# the font color of the ``XAxis`` ticklabels using the ``Axes`` helper
# method::
#
# ax.tick_params(axis='x', labelcolor='orange')
#
# Below is a summary of the Artists that the `~.axes.Axes` contains
#
# ============== =========================================
# Axes attribute Description
# ============== =========================================
# artists An `.ArtistList` of `.Artist` instances
# patch `.Rectangle` instance for Axes background
# collections An `.ArtistList` of `.Collection` instances
# images An `.ArtistList` of `.AxesImage`
# lines An `.ArtistList` of `.Line2D` instances
# patches An `.ArtistList` of `.Patch` instances
# texts An `.ArtistList` of `.Text` instances
# xaxis A `matplotlib.axis.XAxis` instance
# yaxis A `matplotlib.axis.YAxis` instance
# ============== =========================================
#
# The legend can be accessed by `~.axes.Axes.get_legend`,
#
# .. _axis-container:
#
# Axis containers
# ---------------
#
# The :class:`matplotlib.axis.Axis` instances handle the drawing of the
# tick lines, the grid lines, the tick labels and the axis label. You
# can configure the left and right ticks separately for the y-axis, and
# the upper and lower ticks separately for the x-axis. The ``Axis``
# also stores the data and view intervals used in auto-scaling, panning
# and zooming, as well as the :class:`~matplotlib.ticker.Locator` and
# :class:`~matplotlib.ticker.Formatter` instances which control where
# the ticks are placed and how they are represented as strings.
#
# Each ``Axis`` object contains a :attr:`~matplotlib.axis.Axis.label` attribute
# (this is what :mod:`.pyplot` modifies in calls to `~.pyplot.xlabel` and
# `~.pyplot.ylabel`) as well as a list of major and minor ticks. The ticks are
# `.axis.XTick` and `.axis.YTick` instances, which contain the actual line and
# text primitives that render the ticks and ticklabels. Because the ticks are
# dynamically created as needed (e.g., when panning and zooming), you should
# access the lists of major and minor ticks through their accessor methods
# `.axis.Axis.get_major_ticks` and `.axis.Axis.get_minor_ticks`. Although
# the ticks contain all the primitives and will be covered below, ``Axis``
# instances have accessor methods that return the tick lines, tick labels, tick
# locations etc.:
fig, ax = plt.subplots()
axis = ax.xaxis
axis.get_ticklocs()
# %%
axis.get_ticklabels()
# %%
# note there are twice as many ticklines as labels because by default there are
# tick lines at the top and bottom but only tick labels below the xaxis;
# however, this can be customized.
axis.get_ticklines()
# %%
# And with the above methods, you only get lists of major ticks back by
# default, but you can also ask for the minor ticks:
axis.get_ticklabels(minor=True)
axis.get_ticklines(minor=True)
# %%
# Here is a summary of some of the useful accessor methods of the ``Axis``
# (these have corresponding setters where useful, such as
# :meth:`~matplotlib.axis.Axis.set_major_formatter`.)
#
# ============================= ==============================================
# Axis accessor method Description
# ============================= ==============================================
# `~.Axis.get_scale` The scale of the Axis, e.g., 'log' or 'linear'
# `~.Axis.get_view_interval` The interval instance of the Axis view limits
# `~.Axis.get_data_interval` The interval instance of the Axis data limits
# `~.Axis.get_gridlines` A list of grid lines for the Axis
# `~.Axis.get_label` The Axis label - a `.Text` instance
# `~.Axis.get_offset_text` The Axis offset text - a `.Text` instance
# `~.Axis.get_ticklabels` A list of `.Text` instances -
# keyword minor=True|False
# `~.Axis.get_ticklines` A list of `.Line2D` instances -
# keyword minor=True|False
# `~.Axis.get_ticklocs` A list of Tick locations -
# keyword minor=True|False
# `~.Axis.get_major_locator` The `.ticker.Locator` instance for major ticks
# `~.Axis.get_major_formatter` The `.ticker.Formatter` instance for major
# ticks
# `~.Axis.get_minor_locator` The `.ticker.Locator` instance for minor ticks
# `~.Axis.get_minor_formatter` The `.ticker.Formatter` instance for minor
# ticks
# `~.axis.Axis.get_major_ticks` A list of `.Tick` instances for major ticks
# `~.axis.Axis.get_minor_ticks` A list of `.Tick` instances for minor ticks
# `~.Axis.grid` Turn the grid on or off for the major or minor
# ticks
# ============================= ==============================================
#
# Here is an example, not recommended for its beauty, which customizes
# the Axes and Tick properties.
# plt.figure creates a matplotlib.figure.Figure instance
fig = plt.figure()
rect = fig.patch # a rectangle instance
rect.set_facecolor('lightgoldenrodyellow')
ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = ax1.patch
rect.set_facecolor('lightslategray')
for label in ax1.xaxis.get_ticklabels():
# label is a Text instance
label.set_color('red')
label.set_rotation(45)
label.set_fontsize(16)
for line in ax1.yaxis.get_ticklines():
# line is a Line2D instance
line.set_color('green')
line.set_markersize(25)
line.set_markeredgewidth(3)
plt.show()
# %%
# .. _tick-container:
#
# Tick containers
# ---------------
#
# The :class:`matplotlib.axis.Tick` is the final container object in our
# descent from the :class:`~matplotlib.figure.Figure` to the
# :class:`~matplotlib.axes.Axes` to the :class:`~matplotlib.axis.Axis`
# to the :class:`~matplotlib.axis.Tick`. The ``Tick`` contains the tick
# and grid line instances, as well as the label instances for the upper
# and lower ticks. Each of these is accessible directly as an attribute
# of the ``Tick``.
#
# ============== ==========================================================
# Tick attribute Description
# ============== ==========================================================
# tick1line A `.Line2D` instance
# tick2line A `.Line2D` instance
# gridline A `.Line2D` instance
# label1 A `.Text` instance
# label2 A `.Text` instance
# ============== ==========================================================
#
# Here is an example which sets the formatter for the right side ticks with
# dollar signs and colors them green on the right side of the yaxis.
#
#
# .. include:: ../gallery/ticks/dollar_ticks.rst
# :start-after: .. redirect-from:: /gallery/pyplots/dollar_ticks
# :end-before: .. admonition:: References
|