File: pyplot.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (476 lines) | stat: -rw-r--r-- 16,810 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
"""
.. redirect-from:: /tutorials/introductory/pyplot

.. _pyplot_tutorial:

===============
Pyplot tutorial
===============

An introduction to the pyplot interface.  Please also see
:ref:`quick_start` for an overview of how Matplotlib
works and :ref:`api_interfaces` for an explanation of the trade-offs between the
supported user APIs.

"""

# %%
# Introduction to pyplot
# ======================
#
# :mod:`matplotlib.pyplot` is a collection of functions that make matplotlib
# work like MATLAB.  Each ``pyplot`` function makes some change to a figure:
# e.g., creates a figure, creates a plotting area in a figure, plots some lines
# in a plotting area, decorates the plot with labels, etc.
#
# In :mod:`matplotlib.pyplot` various states are preserved
# across function calls, so that it keeps track of things like
# the current figure and plotting area, and the plotting
# functions are directed to the current Axes (please note that we use uppercase
# Axes to refer to the `~.axes.Axes` concept, which is a central
# :ref:`part of a figure <figure_parts>`
# and not only the plural of *axis*).
#
# .. note::
#
#    The implicit pyplot API is generally less verbose but also not as flexible as the
#    explicit API.  Most of the function calls you see here can also be called
#    as methods from an ``Axes`` object. We recommend browsing the tutorials
#    and examples to see how this works. See :ref:`api_interfaces` for an
#    explanation of the trade-off of the supported user APIs.
#
# Generating visualizations with pyplot is very quick:

import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()

# %%
# You may be wondering why the x-axis ranges from 0-3 and the y-axis
# from 1-4.  If you provide a single list or array to
# `~.pyplot.plot`, matplotlib assumes it is a
# sequence of y values, and automatically generates the x values for
# you.  Since python ranges start with 0, the default x vector has the
# same length as y but starts with 0; therefore, the x data are
# ``[0, 1, 2, 3]``.
#
# `~.pyplot.plot` is a versatile function, and will take an arbitrary number of
# arguments.  For example, to plot x versus y, you can write:

plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

# %%
# Formatting the style of your plot
# ---------------------------------
#
# For every x, y pair of arguments, there is an optional third argument
# which is the format string that indicates the color and line type of
# the plot.  The letters and symbols of the format string are from
# MATLAB, and you concatenate a color string with a line style string.
# The default format string is 'b-', which is a solid blue line.  For
# example, to plot the above with red circles, you would issue

plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
plt.axis((0, 6, 0, 20))
plt.show()

# %%
# See the `~.pyplot.plot` documentation for a complete
# list of line styles and format strings.  The
# `~.pyplot.axis` function in the example above takes a
# list of ``[xmin, xmax, ymin, ymax]`` and specifies the viewport of the
# Axes.
#
# If matplotlib were limited to working with lists, it would be fairly
# useless for numeric processing.  Generally, you will use `numpy
# <https://numpy.org/>`_ arrays.  In fact, all sequences are
# converted to numpy arrays internally.  The example below illustrates
# plotting several lines with different format styles in one function call
# using arrays.

import numpy as np

# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

# %%
# .. _plotting-with-keywords:
#
# Plotting with keyword strings
# =============================
#
# There are some instances where you have data in a format that lets you
# access particular variables with strings. For example, with `structured arrays`_
# or `pandas.DataFrame`.
#
# .. _structured arrays: https://numpy.org/doc/stable/user/basics.rec.html#structured-arrays
#
# Matplotlib allows you to provide such an object with
# the ``data`` keyword argument. If provided, then you may generate plots with
# the strings corresponding to these variables.

data = {'a': np.arange(50),
        'c': np.random.randint(0, 50, 50),
        'd': np.random.randn(50)}
data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100

plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')
plt.ylabel('entry b')
plt.show()

# %%
# .. _plotting-with-categorical-vars:
#
# Plotting with categorical variables
# ===================================
#
# It is also possible to create a plot using categorical variables.
# Matplotlib allows you to pass categorical variables directly to
# many plotting functions. For example:

names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]

plt.figure(figsize=(9, 3))

plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()

# %%
# .. _controlling-line-properties:
#
# Controlling line properties
# ===========================
#
# Lines have many attributes that you can set: linewidth, dash style,
# antialiased, etc; see `matplotlib.lines.Line2D`.  There are
# several ways to set line properties
#
# * Use keyword arguments::
#
#       plt.plot(x, y, linewidth=2.0)
#
#
# * Use the setter methods of a ``Line2D`` instance.  ``plot`` returns a list
#   of ``Line2D`` objects; e.g., ``line1, line2 = plot(x1, y1, x2, y2)``.  In the code
#   below we will suppose that we have only
#   one line so that the list returned is of length 1.  We use tuple unpacking with
#   ``line,`` to get the first element of that list::
#
#       line, = plt.plot(x, y, '-')
#       line.set_antialiased(False) # turn off antialiasing
#
# * Use `~.pyplot.setp`.  The example below
#   uses a MATLAB-style function to set multiple properties
#   on a list of lines.  ``setp`` works transparently with a list of objects
#   or a single object.  You can either use python keyword arguments or
#   MATLAB-style string/value pairs::
#
#       lines = plt.plot(x1, y1, x2, y2)
#       # use keyword arguments
#       plt.setp(lines, color='r', linewidth=2.0)
#       # or MATLAB style string value pairs
#       plt.setp(lines, 'color', 'r', 'linewidth', 2.0)
#
#
# Here are the available `~.lines.Line2D` properties.
#
# ======================  ==================================================
# Property                Value Type
# ======================  ==================================================
# alpha                   float
# animated                [True | False]
# antialiased or aa       [True | False]
# clip_box                a matplotlib.transform.Bbox instance
# clip_on                 [True | False]
# clip_path               a Path instance and a Transform instance, a Patch
# color or c              any matplotlib color
# contains                the hit testing function
# dash_capstyle           [``'butt'`` | ``'round'`` | ``'projecting'``]
# dash_joinstyle          [``'miter'`` | ``'round'`` | ``'bevel'``]
# dashes                  sequence of on/off ink in points
# data                    (np.array xdata, np.array ydata)
# figure                  a matplotlib.figure.Figure instance
# label                   any string
# linestyle or ls         [ ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'steps'`` | ...]
# linewidth or lw         float value in points
# marker                  [ ``'+'`` | ``','`` | ``'.'`` | ``'1'`` | ``'2'`` | ``'3'`` | ``'4'`` ]
# markeredgecolor or mec  any matplotlib color
# markeredgewidth or mew  float value in points
# markerfacecolor or mfc  any matplotlib color
# markersize or ms        float
# markevery               [ None | integer | (startind, stride) ]
# picker                  used in interactive line selection
# pickradius              the line pick selection radius
# solid_capstyle          [``'butt'`` | ``'round'`` | ``'projecting'``]
# solid_joinstyle         [``'miter'`` | ``'round'`` | ``'bevel'``]
# transform               a matplotlib.transforms.Transform instance
# visible                 [True | False]
# xdata                   np.array
# ydata                   np.array
# zorder                  any number
# ======================  ==================================================
#
# To get a list of settable line properties, call the
# `~.pyplot.setp` function with a line or lines as argument
#
# .. sourcecode:: ipython
#
#     In [69]: lines = plt.plot([1, 2, 3])
#
#     In [70]: plt.setp(lines)
#       alpha: float
#       animated: [True | False]
#       antialiased or aa: [True | False]
#       ...snip
#
# .. _multiple-figs-axes:
#
#
# Working with multiple figures and Axes
# ======================================
#
# MATLAB, and :mod:`.pyplot`, have the concept of the current figure
# and the current Axes.  All plotting functions apply to the current
# Axes.  The function `~.pyplot.gca` returns the current Axes (a
# `matplotlib.axes.Axes` instance), and `~.pyplot.gcf` returns the current
# figure (a `matplotlib.figure.Figure` instance). Normally, you don't have to
# worry about this, because it is all taken care of behind the scenes.  Below
# is a script to create two subplots.


def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

# %%
# The `~.pyplot.figure` call here is optional because a figure will be created
# if none exists, just as an Axes will be created (equivalent to an explicit
# ``subplot()`` call) if none exists.
# The `~.pyplot.subplot` call specifies ``numrows,
# numcols, plot_number`` where ``plot_number`` ranges from 1 to
# ``numrows*numcols``.  The commas in the ``subplot`` call are
# optional if ``numrows*numcols<10``.  So ``subplot(211)`` is identical
# to ``subplot(2, 1, 1)``.
#
# You can create an arbitrary number of subplots
# and Axes.  If you want to place an Axes manually, i.e., not on a
# rectangular grid, use `~.pyplot.axes`,
# which allows you to specify the location as ``axes([left, bottom,
# width, height])`` where all values are in fractional (0 to 1)
# coordinates.  See :doc:`/gallery/subplots_axes_and_figures/axes_demo` for an example of
# placing Axes manually and :doc:`/gallery/subplots_axes_and_figures/subplot` for an
# example with lots of subplots.
#
# You can create multiple figures by using multiple
# `~.pyplot.figure` calls with an increasing figure
# number.  Of course, each figure can contain as many Axes and subplots
# as your heart desires::
#
#     import matplotlib.pyplot as plt
#     plt.figure(1)                # the first figure
#     plt.subplot(211)             # the first subplot in the first figure
#     plt.plot([1, 2, 3])
#     plt.subplot(212)             # the second subplot in the first figure
#     plt.plot([4, 5, 6])
#
#
#     plt.figure(2)                # a second figure
#     plt.plot([4, 5, 6])          # creates a subplot() by default
#
#     plt.figure(1)                # first figure current;
#                                  # subplot(212) still current
#     plt.subplot(211)             # make subplot(211) in the first figure
#                                  # current
#     plt.title('Easy as 1, 2, 3') # subplot 211 title
#
# You can clear the current figure with `~.pyplot.clf`
# and the current Axes with `~.pyplot.cla`.  If you find
# it annoying that states (specifically the current image, figure and Axes)
# are being maintained for you behind the scenes, don't despair: this is just a thin
# stateful wrapper around an object-oriented API, which you can use
# instead (see :ref:`artists_tutorial`)
#
# If you are making lots of figures, you need to be aware of one
# more thing: the memory required for a figure is not completely
# released until the figure is explicitly closed with
# `~.pyplot.close`.  Deleting all references to the
# figure, and/or using the window manager to kill the window in which
# the figure appears on the screen, is not enough, because pyplot
# maintains internal references until `~.pyplot.close`
# is called.
#
# .. _working-with-text:
#
# Working with text
# =================
#
# `~.pyplot.text` can be used to add text in an arbitrary location, and
# `~.pyplot.xlabel`, `~.pyplot.ylabel` and `~.pyplot.title` are used to add
# text in the indicated locations (see :ref:`text_intro` for a
# more detailed example)

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)


plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

# %%
# All of the `~.pyplot.text` functions return a `matplotlib.text.Text`
# instance.  Just as with lines above, you can customize the properties by
# passing keyword arguments into the text functions or using `~.pyplot.setp`::
#
#   t = plt.xlabel('my data', fontsize=14, color='red')
#
# These properties are covered in more detail in :ref:`text_props`.
#
#
# Using mathematical expressions in text
# --------------------------------------
#
# Matplotlib accepts TeX equation expressions in any text expression.
# For example to write the expression :math:`\sigma_i=15` in the title,
# you can write a TeX expression surrounded by dollar signs::
#
#     plt.title(r'$\sigma_i=15$')
#
# The ``r`` preceding the title string is important -- it signifies
# that the string is a *raw* string and not to treat backslashes as
# python escapes.  matplotlib has a built-in TeX expression parser and
# layout engine, and ships its own math fonts -- for details see
# :ref:`mathtext`.  Thus, you can use mathematical text across
# platforms without requiring a TeX installation.  For those who have LaTeX
# and dvipng installed, you can also use LaTeX to format your text and
# incorporate the output directly into your display figures or saved
# postscript -- see :ref:`usetex`.
#
#
# Annotating text
# ---------------
#
# The uses of the basic `~.pyplot.text` function above
# place text at an arbitrary position on the Axes.  A common use for
# text is to annotate some feature of the plot, and the
# `~.pyplot.annotate` method provides helper
# functionality to make annotations easy.  In an annotation, there are
# two points to consider: the location being annotated represented by
# the argument ``xy`` and the location of the text ``xytext``.  Both of
# these arguments are ``(x, y)`` tuples.

ax = plt.subplot()

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
             arrowprops=dict(facecolor='black', shrink=0.05),
             )

plt.ylim(-2, 2)
plt.show()

# %%
# In this basic example, both the ``xy`` (arrow tip) and ``xytext``
# locations (text location) are in data coordinates.  There are a
# variety of other coordinate systems one can choose -- see
# :ref:`annotations-tutorial` and :ref:`plotting-guide-annotation` for
# details.  More examples can be found in
# :doc:`/gallery/text_labels_and_annotations/annotation_demo`.
#
#
# Logarithmic and other nonlinear axes
# ====================================
#
# :mod:`matplotlib.pyplot` supports not only linear axis scales, but also
# logarithmic and logit scales. This is commonly used if data spans many orders
# of magnitude. Changing the scale of an axis is easy::
#
#     plt.xscale('log')
#
# An example of four plots with the same data and different scales for the y-axis
# is shown below.

# Fixing random state for reproducibility
np.random.seed(19680801)

# make up some data in the open interval (0, 1)
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))

# plot with various axes scales
plt.figure()

# linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)

# log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True)

# symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthresh=0.01)
plt.title('symlog')
plt.grid(True)

# logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
                    wspace=0.35)

plt.show()

# %%
# It is also possible to add your own scale, see `matplotlib.scale` for
# details.