1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
"""
.. redirect-from:: /tutorials/introductory/animation_tutorial
.. _animations:
===========================
Animations using Matplotlib
===========================
Based on its plotting functionality, Matplotlib also provides an interface to
generate animations using the `~matplotlib.animation` module. An
animation is a sequence of frames where each frame corresponds to a plot on a
`~matplotlib.figure.Figure`. This tutorial covers a general guideline on
how to create such animations and the different options available. More information is available in the API description: `~matplotlib.animation`
"""
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.animation as animation
# %%
# Animation classes
# =================
#
# The animation process in Matplotlib can be thought of in 2 different ways:
#
# - `~matplotlib.animation.FuncAnimation`: Generate data for first
# frame and then modify this data for each frame to create an animated plot.
#
# - `~matplotlib.animation.ArtistAnimation`: Generate a list (iterable)
# of artists that will draw in each frame in the animation.
#
# `~matplotlib.animation.FuncAnimation` is more efficient in terms of
# speed and memory as it draws an artist once and then modifies it. On the
# other hand `~matplotlib.animation.ArtistAnimation` is flexible as it
# allows any iterable of artists to be animated in a sequence.
#
# ``FuncAnimation``
# -----------------
#
# The `~matplotlib.animation.FuncAnimation` class allows us to create an
# animation by passing a function that iteratively modifies the data of a plot.
# This is achieved by using the *setter* methods on various
# `~matplotlib.artist.Artist` (examples: `~matplotlib.lines.Line2D`,
# `~matplotlib.collections.PathCollection`, etc.). A usual
# `~matplotlib.animation.FuncAnimation` object takes a
# `~matplotlib.figure.Figure` that we want to animate and a function
# *func* that modifies the data plotted on the figure. It uses the *frames*
# parameter to determine the length of the animation. The *interval* parameter
# is used to determine time in milliseconds between drawing of two frames.
# Animating using `.FuncAnimation` typically requires these steps:
#
# 1) Plot the initial figure as you would in a static plot. Save all the created
# artists, which are returned by the plot functions, in variables so that you can
# access and modify them later in the animation function.
# 2) Create an animation function that updates the artists for a given frame.
# Typically, this calls ``set_*`` methods of the artists.
# 3) Create a `.FuncAnimation`, passing the `.Figure` and the animation function.
# 4) Save or show the animation using one of the following methods:
#
# - `.pyplot.show` to show the animation in a window
# - `.Animation.to_html5_video` to create a HTML ``<video>`` tag
# - `.Animation.to_jshtml` to create HTML code with interactive JavaScript animation
# controls
# - `.Animation.save` to save the animation to a file
#
# The following table shows a few plotting methods, the artists they return and some
# commonly used ``set_*`` methods that update the underlying data. While updating data
# is the most common operation in animations, you can also update other aspects such as
# color or text position.
#
# ======================================== ============================= ===========================
# Plotting method Artist Data set methods
# ======================================== ============================= ===========================
# `.Axes.plot` `.lines.Line2D` `~.Line2D.set_data`,
# `~.Line2D.set_xdata`,
# `~.Line2D.set_ydata`
# `.Axes.scatter` `.collections.PathCollection` `~.collections.\
# PathCollection.set_offsets`
# `.Axes.imshow` `.image.AxesImage` ``AxesImage.set_data``
# `.Axes.annotate` `.text.Annotation` `~.text.Annotation.\
# update_positions`
# `.Axes.barh` `.patches.Rectangle` `~.Rectangle.set_angle`,
# `~.Rectangle.set_bounds`,
# `~.Rectangle.set_height`,
# `~.Rectangle.set_width`,
# `~.Rectangle.set_x`,
# `~.Rectangle.set_y`,
# `~.Rectangle.set_xy`
# `.Axes.fill` `.patches.Polygon` `~.Polygon.set_xy`
# `.Axes.add_patch`\(`.patches.Ellipse`\) `.patches.Ellipse` `~.Ellipse.set_angle`,
# `~.Ellipse.set_center`,
# `~.Ellipse.set_height`,
# `~.Ellipse.set_width`
# `.Axes.set_title`, `.Axes.text` `.text.Text` `~.Text.set_text`
# ======================================== ============================= ===========================
#
# Covering the set methods for all types of artists is beyond the scope of this
# tutorial but can be found in their respective documentations. An example of
# such update methods in use for `.Axes.scatter` and `.Axes.plot` is as follows.
fig, ax = plt.subplots()
t = np.linspace(0, 3, 40)
g = -9.81
v0 = 12
z = g * t**2 / 2 + v0 * t
v02 = 5
z2 = g * t**2 / 2 + v02 * t
scat = ax.scatter(t[0], z[0], c="b", s=5, label=f'v0 = {v0} m/s')
line2 = ax.plot(t[0], z2[0], label=f'v0 = {v02} m/s')[0]
ax.set(xlim=[0, 3], ylim=[-4, 10], xlabel='Time [s]', ylabel='Z [m]')
ax.legend()
def update(frame):
# for each frame, update the data stored on each artist.
x = t[:frame]
y = z[:frame]
# update the scatter plot:
data = np.stack([x, y]).T
scat.set_offsets(data)
# update the line plot:
line2.set_xdata(t[:frame])
line2.set_ydata(z2[:frame])
return (scat, line2)
ani = animation.FuncAnimation(fig=fig, func=update, frames=40, interval=30)
plt.show()
# %%
# ``ArtistAnimation``
# -------------------
#
# `~matplotlib.animation.ArtistAnimation` can be used
# to generate animations if there is data stored on various different artists.
# This list of artists is then converted frame by frame into an animation. For
# example, when we use `.Axes.barh` to plot a bar-chart, it creates a number of
# artists for each of the bar and error bars. To update the plot, one would
# need to update each of the bars from the container individually and redraw
# them. Instead, `.animation.ArtistAnimation` can be used to plot each frame
# individually and then stitched together to form an animation. A barchart race
# is a simple example for this.
fig, ax = plt.subplots()
rng = np.random.default_rng(19680801)
data = np.array([20, 20, 20, 20])
x = np.array([1, 2, 3, 4])
artists = []
colors = ['tab:blue', 'tab:red', 'tab:green', 'tab:purple']
for i in range(20):
data += rng.integers(low=0, high=10, size=data.shape)
container = ax.barh(x, data, color=colors)
artists.append(container)
ani = animation.ArtistAnimation(fig=fig, artists=artists, interval=400)
plt.show()
# %%
# Animation writers
# =================
#
# Animation objects can be saved to disk using various multimedia writers
# (ex: Pillow, *ffpmeg*, *imagemagick*). Not all video formats are supported
# by all writers. There are 4 major types of writers:
#
# - `~matplotlib.animation.PillowWriter` - Uses the Pillow library to
# create the animation.
#
# - `~matplotlib.animation.HTMLWriter` - Used to create JavaScript-based
# animations.
#
# - Pipe-based writers - `~matplotlib.animation.FFMpegWriter` and
# `~matplotlib.animation.ImageMagickWriter` are pipe based writers.
# These writers pipe each frame to the utility (*ffmpeg* / *imagemagick*)
# which then stitches all of them together to create the animation.
#
# - File-based writers - `~matplotlib.animation.FFMpegFileWriter` and
# `~matplotlib.animation.ImageMagickFileWriter` are examples of
# file-based writers. These writers are slower than their pipe-based
# alternatives but are more useful for debugging as they save each frame in
# a file before stitching them together into an animation.
#
# Saving Animations
# -----------------
#
# .. list-table::
# :header-rows: 1
#
# * - Writer
# - Supported Formats
# * - `~matplotlib.animation.PillowWriter`
# - .gif, .apng, .webp
# * - `~matplotlib.animation.HTMLWriter`
# - .htm, .html, .png
# * - | `~matplotlib.animation.FFMpegWriter`
# | `~matplotlib.animation.FFMpegFileWriter`
# - All formats supported by |ffmpeg|_: ``ffmpeg -formats``
# * - | `~matplotlib.animation.ImageMagickWriter`
# | `~matplotlib.animation.ImageMagickFileWriter`
# - All formats supported by |imagemagick|_: ``magick -list format``
#
# .. _ffmpeg: https://www.ffmpeg.org/general.html#Supported-File-Formats_002c-Codecs-or-Features
# .. |ffmpeg| replace:: *ffmpeg*
#
# .. _imagemagick: https://imagemagick.org/script/formats.php#supported
# .. |imagemagick| replace:: *imagemagick*
#
# To save animations using any of the writers, we can use the
# `.animation.Animation.save` method. It takes the *filename* that we want to
# save the animation as and the *writer*, which is either a string or a writer
# object. It also takes an *fps* argument. This argument is different than the
# *interval* argument that `~.animation.FuncAnimation` or
# `~.animation.ArtistAnimation` uses. *fps* determines the frame rate that the
# **saved** animation uses, whereas *interval* determines the frame rate that
# the **displayed** animation uses.
#
# Below are a few examples that show how to save an animation with different
# writers.
#
#
# Pillow writers::
#
# ani.save(filename="/tmp/pillow_example.gif", writer="pillow")
# ani.save(filename="/tmp/pillow_example.apng", writer="pillow")
#
# HTML writers::
#
# ani.save(filename="/tmp/html_example.html", writer="html")
# ani.save(filename="/tmp/html_example.htm", writer="html")
# ani.save(filename="/tmp/html_example.png", writer="html")
#
# FFMpegWriter::
#
# ani.save(filename="/tmp/ffmpeg_example.mkv", writer="ffmpeg")
# ani.save(filename="/tmp/ffmpeg_example.mp4", writer="ffmpeg")
# ani.save(filename="/tmp/ffmpeg_example.mjpeg", writer="ffmpeg")
#
# Imagemagick writers::
#
# ani.save(filename="/tmp/imagemagick_example.gif", writer="imagemagick")
# ani.save(filename="/tmp/imagemagick_example.webp", writer="imagemagick")
# ani.save(filename="apng:/tmp/imagemagick_example.apng",
# writer="imagemagick", extra_args=["-quality", "100"])
#
# (the ``extra_args`` for *apng* are needed to reduce filesize by ~10x)
#
# Note that *ffmpeg* and *imagemagick* need to be separately installed.
# A cross-platform way to obtain *ffmpeg* is to install the ``imageio_ffmpeg``
# PyPI package, and then to set
# ``rcParams["animation.ffmpeg_path"] = imageio_ffmpeg.get_ffmpeg_exe()``.
|