File: paths.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (233 lines) | stat: -rw-r--r-- 7,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
.. redirect-from:: /tutorials/advanced/path_tutorial

.. _paths:

=============
Path Tutorial
=============

Defining paths in your Matplotlib visualization.

The object underlying all of the :mod:`matplotlib.patches` objects is
the :class:`~matplotlib.path.Path`, which supports the standard set of
moveto, lineto, curveto commands to draw simple and compound outlines
consisting of line segments and splines.  The ``Path`` is instantiated
with a (N, 2) array of (x, y) vertices, and an N-length array of path
codes.  For example to draw the unit rectangle from (0, 0) to (1, 1), we
could use this code:
"""

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches
from matplotlib.path import Path

verts = [
   (0., 0.),  # left, bottom
   (0., 1.),  # left, top
   (1., 1.),  # right, top
   (1., 0.),  # right, bottom
   (0., 0.),  # ignored
]

codes = [
    Path.MOVETO,
    Path.LINETO,
    Path.LINETO,
    Path.LINETO,
    Path.CLOSEPOLY,
]

path = Path(verts, codes)

fig, ax = plt.subplots()
patch = patches.PathPatch(path, facecolor='orange', lw=2)
ax.add_patch(patch)
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
plt.show()


# %%
# The following path codes are recognized
#
# ============= ======================== ======================================
# Code          Vertices                 Description
# ============= ======================== ======================================
# ``STOP``      1 (ignored)              A marker for the end of the entire
#                                        path (currently not required and
#                                        ignored).
# ``MOVETO``    1                        Pick up the pen and move to the given
#                                        vertex.
# ``LINETO``    1                        Draw a line from the current position
#                                        to the given vertex.
# ``CURVE3``    2:                       Draw a quadratic Bézier curve from the
#               1 control point,         current position, with the given
#               1 end point              control point, to the given end point.
# ``CURVE4``    3:                       Draw a cubic Bézier curve from the
#               2 control points,        current position, with the given
#               1 end point              control points, to the given end
#                                        point.
# ``CLOSEPOLY`` 1 (the point is ignored) Draw a line segment to the start point
#                                        of the current polyline.
# ============= ======================== ======================================
#
#
# .. path-curves:
#
#
# Bézier example
# ==============
#
# Some of the path components require multiple vertices to specify them:
# for example CURVE 3 is a `Bézier
# <https://en.wikipedia.org/wiki/B%C3%A9zier_curve>`_ curve with one
# control point and one end point, and CURVE4 has three vertices for the
# two control points and the end point.  The example below shows a
# CURVE4 Bézier spline -- the Bézier curve will be contained in the
# convex hull of the start point, the two control points, and the end
# point

verts = [
   (0., 0.),   # P0
   (0.2, 1.),  # P1
   (1., 0.8),  # P2
   (0.8, 0.),  # P3
]

codes = [
    Path.MOVETO,
    Path.CURVE4,
    Path.CURVE4,
    Path.CURVE4,
]

path = Path(verts, codes)

fig, ax = plt.subplots()
patch = patches.PathPatch(path, facecolor='none', lw=2)
ax.add_patch(patch)

xs, ys = zip(*verts)
ax.plot(xs, ys, 'x--', lw=2, color='black', ms=10)

ax.text(-0.05, -0.05, 'P0')
ax.text(0.15, 1.05, 'P1')
ax.text(1.05, 0.85, 'P2')
ax.text(0.85, -0.05, 'P3')

ax.set_xlim(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
plt.show()

# %%
# .. compound_paths:
#
# Compound paths
# ==============
#
# All of the simple patch primitives in matplotlib, Rectangle, Circle,
# Polygon, etc, are implemented with simple path.  Plotting functions
# like :meth:`~matplotlib.axes.Axes.hist` and
# :meth:`~matplotlib.axes.Axes.bar`, which create a number of
# primitives, e.g., a bunch of Rectangles, can usually be implemented more
# efficiently using a compound path.  The reason ``bar`` creates a list
# of rectangles and not a compound path is largely historical: the
# :class:`~matplotlib.path.Path` code is comparatively new and ``bar``
# predates it.  While we could change it now, it would break old code,
# so here we will cover how to create compound paths, replacing the
# functionality in bar, in case you need to do so in your own code for
# efficiency reasons, e.g., you are creating an animated bar plot.
#
# We will make the histogram chart by creating a series of rectangles
# for each histogram bar: the rectangle width is the bin width and the
# rectangle height is the number of datapoints in that bin.  First we'll
# create some random normally distributed data and compute the
# histogram.  Because NumPy returns the bin edges and not centers, the
# length of ``bins`` is one greater than the length of ``n`` in the
# example below::
#
#     # histogram our data with numpy
#     data = np.random.randn(1000)
#     n, bins = np.histogram(data, 100)
#
# We'll now extract the corners of the rectangles.  Each of the
# ``left``, ``bottom``, etc., arrays below is ``len(n)``, where ``n`` is
# the array of counts for each histogram bar::
#
#     # get the corners of the rectangles for the histogram
#     left = np.array(bins[:-1])
#     right = np.array(bins[1:])
#     bottom = np.zeros(len(left))
#     top = bottom + n
#
# Now we have to construct our compound path, which will consist of a
# series of ``MOVETO``, ``LINETO`` and ``CLOSEPOLY`` for each rectangle.
# For each rectangle, we need five vertices: one for the ``MOVETO``,
# three for the ``LINETO``, and one for the ``CLOSEPOLY``.  As indicated
# in the table above, the vertex for the closepoly is ignored, but we still
# need it to keep the codes aligned with the vertices::
#
#     nverts = nrects*(1+3+1)
#     verts = np.zeros((nverts, 2))
#     codes = np.ones(nverts, int) * path.Path.LINETO
#     codes[0::5] = path.Path.MOVETO
#     codes[4::5] = path.Path.CLOSEPOLY
#     verts[0::5, 0] = left
#     verts[0::5, 1] = bottom
#     verts[1::5, 0] = left
#     verts[1::5, 1] = top
#     verts[2::5, 0] = right
#     verts[2::5, 1] = top
#     verts[3::5, 0] = right
#     verts[3::5, 1] = bottom
#
# All that remains is to create the path, attach it to a
# :class:`~matplotlib.patches.PathPatch`, and add it to our Axes::
#
#     barpath = path.Path(verts, codes)
#     patch = patches.PathPatch(barpath, facecolor='green',
#       edgecolor='yellow', alpha=0.5)
#     ax.add_patch(patch)

fig, ax = plt.subplots()
# Fixing random state for reproducibility
np.random.seed(19680801)

# histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

# get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n
nrects = len(left)

nverts = nrects*(1+3+1)
verts = np.zeros((nverts, 2))
codes = np.full(nverts, Path.LINETO, dtype=int)
codes[0::5] = Path.MOVETO
codes[4::5] = Path.CLOSEPOLY
verts[0::5, 0] = left
verts[0::5, 1] = bottom
verts[1::5, 0] = left
verts[1::5, 1] = top
verts[2::5, 0] = right
verts[2::5, 1] = top
verts[3::5, 0] = right
verts[3::5, 1] = bottom

barpath = Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor='green',
                          edgecolor='yellow', alpha=0.5)
ax.add_patch(patch)

ax.set_xlim(left[0], right[-1])
ax.set_ylim(bottom.min(), top.max())

plt.show()