1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
"""
.. redirect-from:: /tutorials/advanced/path_tutorial
.. _paths:
=============
Path Tutorial
=============
Defining paths in your Matplotlib visualization.
The object underlying all of the :mod:`matplotlib.patches` objects is
the :class:`~matplotlib.path.Path`, which supports the standard set of
moveto, lineto, curveto commands to draw simple and compound outlines
consisting of line segments and splines. The ``Path`` is instantiated
with a (N, 2) array of (x, y) vertices, and an N-length array of path
codes. For example to draw the unit rectangle from (0, 0) to (1, 1), we
could use this code:
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.path import Path
verts = [
(0., 0.), # left, bottom
(0., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom
(0., 0.), # ignored
]
codes = [
Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]
path = Path(verts, codes)
fig, ax = plt.subplots()
patch = patches.PathPatch(path, facecolor='orange', lw=2)
ax.add_patch(patch)
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
plt.show()
# %%
# The following path codes are recognized
#
# ============= ======================== ======================================
# Code Vertices Description
# ============= ======================== ======================================
# ``STOP`` 1 (ignored) A marker for the end of the entire
# path (currently not required and
# ignored).
# ``MOVETO`` 1 Pick up the pen and move to the given
# vertex.
# ``LINETO`` 1 Draw a line from the current position
# to the given vertex.
# ``CURVE3`` 2: Draw a quadratic Bézier curve from the
# 1 control point, current position, with the given
# 1 end point control point, to the given end point.
# ``CURVE4`` 3: Draw a cubic Bézier curve from the
# 2 control points, current position, with the given
# 1 end point control points, to the given end
# point.
# ``CLOSEPOLY`` 1 (the point is ignored) Draw a line segment to the start point
# of the current polyline.
# ============= ======================== ======================================
#
#
# .. path-curves:
#
#
# Bézier example
# ==============
#
# Some of the path components require multiple vertices to specify them:
# for example CURVE 3 is a `Bézier
# <https://en.wikipedia.org/wiki/B%C3%A9zier_curve>`_ curve with one
# control point and one end point, and CURVE4 has three vertices for the
# two control points and the end point. The example below shows a
# CURVE4 Bézier spline -- the Bézier curve will be contained in the
# convex hull of the start point, the two control points, and the end
# point
verts = [
(0., 0.), # P0
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3
]
codes = [
Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
]
path = Path(verts, codes)
fig, ax = plt.subplots()
patch = patches.PathPatch(path, facecolor='none', lw=2)
ax.add_patch(patch)
xs, ys = zip(*verts)
ax.plot(xs, ys, 'x--', lw=2, color='black', ms=10)
ax.text(-0.05, -0.05, 'P0')
ax.text(0.15, 1.05, 'P1')
ax.text(1.05, 0.85, 'P2')
ax.text(0.85, -0.05, 'P3')
ax.set_xlim(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
plt.show()
# %%
# .. compound_paths:
#
# Compound paths
# ==============
#
# All of the simple patch primitives in matplotlib, Rectangle, Circle,
# Polygon, etc, are implemented with simple path. Plotting functions
# like :meth:`~matplotlib.axes.Axes.hist` and
# :meth:`~matplotlib.axes.Axes.bar`, which create a number of
# primitives, e.g., a bunch of Rectangles, can usually be implemented more
# efficiently using a compound path. The reason ``bar`` creates a list
# of rectangles and not a compound path is largely historical: the
# :class:`~matplotlib.path.Path` code is comparatively new and ``bar``
# predates it. While we could change it now, it would break old code,
# so here we will cover how to create compound paths, replacing the
# functionality in bar, in case you need to do so in your own code for
# efficiency reasons, e.g., you are creating an animated bar plot.
#
# We will make the histogram chart by creating a series of rectangles
# for each histogram bar: the rectangle width is the bin width and the
# rectangle height is the number of datapoints in that bin. First we'll
# create some random normally distributed data and compute the
# histogram. Because NumPy returns the bin edges and not centers, the
# length of ``bins`` is one greater than the length of ``n`` in the
# example below::
#
# # histogram our data with numpy
# data = np.random.randn(1000)
# n, bins = np.histogram(data, 100)
#
# We'll now extract the corners of the rectangles. Each of the
# ``left``, ``bottom``, etc., arrays below is ``len(n)``, where ``n`` is
# the array of counts for each histogram bar::
#
# # get the corners of the rectangles for the histogram
# left = np.array(bins[:-1])
# right = np.array(bins[1:])
# bottom = np.zeros(len(left))
# top = bottom + n
#
# Now we have to construct our compound path, which will consist of a
# series of ``MOVETO``, ``LINETO`` and ``CLOSEPOLY`` for each rectangle.
# For each rectangle, we need five vertices: one for the ``MOVETO``,
# three for the ``LINETO``, and one for the ``CLOSEPOLY``. As indicated
# in the table above, the vertex for the closepoly is ignored, but we still
# need it to keep the codes aligned with the vertices::
#
# nverts = nrects*(1+3+1)
# verts = np.zeros((nverts, 2))
# codes = np.ones(nverts, int) * path.Path.LINETO
# codes[0::5] = path.Path.MOVETO
# codes[4::5] = path.Path.CLOSEPOLY
# verts[0::5, 0] = left
# verts[0::5, 1] = bottom
# verts[1::5, 0] = left
# verts[1::5, 1] = top
# verts[2::5, 0] = right
# verts[2::5, 1] = top
# verts[3::5, 0] = right
# verts[3::5, 1] = bottom
#
# All that remains is to create the path, attach it to a
# :class:`~matplotlib.patches.PathPatch`, and add it to our Axes::
#
# barpath = path.Path(verts, codes)
# patch = patches.PathPatch(barpath, facecolor='green',
# edgecolor='yellow', alpha=0.5)
# ax.add_patch(patch)
fig, ax = plt.subplots()
# Fixing random state for reproducibility
np.random.seed(19680801)
# histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)
# get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n
nrects = len(left)
nverts = nrects*(1+3+1)
verts = np.zeros((nverts, 2))
codes = np.full(nverts, Path.LINETO, dtype=int)
codes[0::5] = Path.MOVETO
codes[4::5] = Path.CLOSEPOLY
verts[0::5, 0] = left
verts[0::5, 1] = bottom
verts[1::5, 0] = left
verts[1::5, 1] = top
verts[2::5, 0] = right
verts[2::5, 1] = top
verts[3::5, 0] = right
verts[3::5, 1] = bottom
barpath = Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor='green',
edgecolor='yellow', alpha=0.5)
ax.add_patch(patch)
ax.set_xlim(left[0], right[-1])
ax.set_ylim(bottom.min(), top.max())
plt.show()
|