1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
"""
.. redirect-from:: /tutorials/intermediate/autoscale
.. _autoscale:
Autoscaling Axis
================
The limits on an axis can be set manually (e.g. ``ax.set_xlim(xmin, xmax)``)
or Matplotlib can set them automatically based on the data already on the Axes.
There are a number of options to this autoscaling behaviour, discussed below.
"""
# %%
# We will start with a simple line plot showing that autoscaling
# extends the axis limits 5% beyond the data limits (-2π, 2π).
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
x = np.linspace(-2 * np.pi, 2 * np.pi, 100)
y = np.sinc(x)
fig, ax = plt.subplots()
ax.plot(x, y)
# %%
# Margins
# -------
# The default margin around the data limits is 5%, which is based on the
# default configuration setting of :rc:`axes.xmargin`, :rc:`axes.ymargin`,
# and :rc:`axes.zmargin`:
print(ax.margins())
# %%
# The margin size can be overridden to make them smaller or larger using
# `~matplotlib.axes.Axes.margins`:
fig, ax = plt.subplots()
ax.plot(x, y)
ax.margins(0.2, 0.2)
# %%
# In general, margins can be in the range (-0.5, ∞), where negative margins set
# the axes limits to a subrange of the data range, i.e. they clip data.
# Using a single number for margins affects both axes, a single margin can be
# customized using keyword arguments ``x`` or ``y``, but positional and keyword
# interface cannot be combined.
fig, ax = plt.subplots()
ax.plot(x, y)
ax.margins(y=-0.2)
# %%
# Sticky edges
# ------------
# There are plot elements (`.Artist`\s) that are usually used without margins.
# For example false-color images (e.g. created with `.Axes.imshow`) are not
# considered in the margins calculation.
#
xx, yy = np.meshgrid(x, x)
zz = np.sinc(np.sqrt((xx - 1)**2 + (yy - 1)**2))
fig, ax = plt.subplots(ncols=2, figsize=(12, 8))
ax[0].imshow(zz)
ax[0].set_title("default margins")
ax[1].imshow(zz)
ax[1].margins(0.2)
ax[1].set_title("margins(0.2)")
# %%
# This override of margins is determined by "sticky edges", a
# property of `.Artist` class that can suppress adding margins to axis
# limits. The effect of sticky edges can be disabled on an Axes by changing
# `~matplotlib.axes.Axes.use_sticky_edges`.
# Artists have a property `.Artist.sticky_edges`, and the values of
# sticky edges can be changed by writing to ``Artist.sticky_edges.x`` or
# ``Artist.sticky_edges.y``.
#
# The following example shows how overriding works and when it is needed.
fig, ax = plt.subplots(ncols=3, figsize=(16, 10))
ax[0].imshow(zz)
ax[0].margins(0.2)
ax[0].set_title("default use_sticky_edges\nmargins(0.2)")
ax[1].imshow(zz)
ax[1].margins(0.2)
ax[1].use_sticky_edges = False
ax[1].set_title("use_sticky_edges=False\nmargins(0.2)")
ax[2].imshow(zz)
ax[2].margins(-0.2)
ax[2].set_title("default use_sticky_edges\nmargins(-0.2)")
# %%
# We can see that setting ``use_sticky_edges`` to *False* renders the image
# with requested margins.
#
# While sticky edges don't increase the axis limits through extra margins,
# negative margins are still taken into account. This can be seen in
# the reduced limits of the third image.
#
# Controlling autoscale
# ---------------------
#
# By default, the limits are
# recalculated every time you add a new curve to the plot:
fig, ax = plt.subplots(ncols=2, figsize=(12, 8))
ax[0].plot(x, y)
ax[0].set_title("Single curve")
ax[1].plot(x, y)
ax[1].plot(x * 2.0, y)
ax[1].set_title("Two curves")
# %%
# However, there are cases when you don't want to automatically adjust the
# viewport to new data.
#
# One way to disable autoscaling is to manually set the
# axis limit. Let's say that we want to see only a part of the data in
# greater detail. Setting the ``xlim`` persists even if we add more curves to
# the data. To recalculate the new limits calling `.Axes.autoscale` will
# toggle the functionality manually.
fig, ax = plt.subplots(ncols=2, figsize=(12, 8))
ax[0].plot(x, y)
ax[0].set_xlim(left=-1, right=1)
ax[0].plot(x + np.pi * 0.5, y)
ax[0].set_title("set_xlim(left=-1, right=1)\n")
ax[1].plot(x, y)
ax[1].set_xlim(left=-1, right=1)
ax[1].plot(x + np.pi * 0.5, y)
ax[1].autoscale()
ax[1].set_title("set_xlim(left=-1, right=1)\nautoscale()")
# %%
# We can check that the first plot has autoscale disabled and that the second
# plot has it enabled again by using `.Axes.get_autoscale_on()`:
print(ax[0].get_autoscale_on()) # False means disabled
print(ax[1].get_autoscale_on()) # True means enabled -> recalculated
# %%
# Arguments of the autoscale function give us precise control over the process
# of autoscaling. A combination of arguments ``enable``, and ``axis`` sets the
# autoscaling feature for the selected axis (or both). The argument ``tight``
# sets the margin of the selected axis to zero. To preserve settings of either
# ``enable`` or ``tight`` you can set the opposite one to *None*, that way
# it should not be modified. However, setting ``enable`` to *None* and tight
# to *True* affects both axes regardless of the ``axis`` argument.
fig, ax = plt.subplots()
ax.plot(x, y)
ax.margins(0.2, 0.2)
ax.autoscale(enable=None, axis="x", tight=True)
print(ax.margins())
# %%
# Working with collections
# ------------------------
#
# Autoscale works out of the box for all lines, patches, and images added to
# the Axes. One of the artists that it won't work with is a `.Collection`.
# After adding a collection to the Axes, one has to manually trigger the
# `~matplotlib.axes.Axes.autoscale_view()` to recalculate
# axes limits.
fig, ax = plt.subplots()
collection = mpl.collections.StarPolygonCollection(
5, rotation=0, sizes=(250,), # five point star, zero angle, size 250px
offsets=np.column_stack([x, y]), # Set the positions
offset_transform=ax.transData, # Propagate transformations of the Axes
)
ax.add_collection(collection)
ax.autoscale_view()
|