1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
##################################
Introduction to Axes (or Subplots)
##################################
Matplotlib `~.axes.Axes` are the gateway to creating your data visualizations.
Once an Axes is placed on a figure there are many methods that can be used to
add data to the Axes. An Axes typically has a pair of `~.axis.Axis`
Artists that define the data coordinate system, and include methods to add
annotations like x- and y-labels, titles, and legends.
.. _anatomy_local:
.. figure:: /_static/anatomy.png
:width: 80%
Anatomy of a Figure
In the picture above, the Axes object was created with ``ax = fig.subplots()``.
Everything else on the figure was created with methods on this ``ax`` object,
or can be accessed from it. If we want to change the label on the x-axis, we
call ``ax.set_xlabel('New Label')``, if we want to plot some data we call
``ax.plot(x, y)``. Indeed, in the figure above, the only Artist that is not
part of the Axes is the Figure itself, so the `.axes.Axes` class is really the
gateway to much of Matplotlib's functionality.
Note that Axes are so fundamental to the operation of Matplotlib that a lot of
material here is duplicate of that in :ref:`quick_start`.
Creating Axes
-------------
.. plot::
:include-source:
import matplotlib.pyplot as plt
import numpy as np
fig, axs = plt.subplots(ncols=2, nrows=2, figsize=(3.5, 2.5),
layout="constrained")
# for each Axes, add an artist, in this case a nice label in the middle...
for row in range(2):
for col in range(2):
axs[row, col].annotate(f'axs[{row}, {col}]', (0.5, 0.5),
transform=axs[row, col].transAxes,
ha='center', va='center', fontsize=18,
color='darkgrey')
fig.suptitle('plt.subplots()')
Axes are added using methods on `~.Figure` objects, or via the `~.pyplot` interface. These methods are discussed in more detail in :ref:`creating_figures` and :doc:`arranging_axes`. However, for instance `~.Figure.add_axes` will manually position an Axes on the page. In the example above `~.pyplot.subplots` put a grid of subplots on the figure, and ``axs`` is a (2, 2) array of Axes, each of which can have data added to them.
There are a number of other methods for adding Axes to a Figure:
* `.Figure.add_axes`: manually position an Axes. ``fig.add_axes([0, 0, 1,
1])`` makes an Axes that fills the whole figure.
* `.pyplot.subplots` and `.Figure.subplots`: add a grid of Axes as in the example
above. The pyplot version returns both the Figure object and an array of
Axes. Note that ``fig, ax = plt.subplots()`` adds a single Axes to a Figure.
* `.pyplot.subplot_mosaic` and `.Figure.subplot_mosaic`: add a grid of named
Axes and return a dictionary of axes. For ``fig, axs =
plt.subplot_mosaic([['left', 'right'], ['bottom', 'bottom']])``,
``axs['left']`` is an Axes in the top row on the left, and ``axs['bottom']``
is an Axes that spans both columns on the bottom.
See :doc:`arranging_axes` for more detail on how to arrange grids of Axes on a
Figure.
Axes plotting methods
---------------------
Most of the high-level plotting methods are accessed from the `.axes.Axes`
class. See the API documentation for a full curated list, and
:ref:`plot_types` for examples. A basic example is `.axes.Axes.plot`:
.. plot::
:include-source:
fig, ax = plt.subplots(figsize=(4, 3))
np.random.seed(19680801)
t = np.arange(100)
x = np.cumsum(np.random.randn(100))
lines = ax.plot(t, x)
Note that ``plot`` returns a list of *lines* Artists which can subsequently be
manipulated, as discussed in :ref:`users_artists`.
A very incomplete list of plotting methods is below. Again, see :ref:`plot_types`
for more examples, and `.axes.Axes` for the full list of methods.
========================= ==================================================
:ref:`basic_plots` `~.axes.Axes.plot`, `~.axes.Axes.scatter`,
`~.axes.Axes.bar`, `~.axes.Axes.step`,
:ref:`arrays` `~.axes.Axes.pcolormesh`, `~.axes.Axes.contour`,
`~.axes.Axes.quiver`, `~.axes.Axes.streamplot`,
`~.axes.Axes.imshow`
:ref:`stats_plots` `~.axes.Axes.hist`, `~.axes.Axes.errorbar`,
`~.axes.Axes.hist2d`, `~.axes.Axes.pie`,
`~.axes.Axes.boxplot`, `~.axes.Axes.violinplot`
:ref:`unstructured_plots` `~.axes.Axes.tricontour`, `~.axes.Axes.tripcolor`
========================= ==================================================
Axes labelling and annotation
-----------------------------
Usually we want to label the Axes with an xlabel, ylabel, and title, and often we want to have a legend to differentiate plot elements. The `~.axes.Axes` class has a number of methods to create these annotations.
.. plot::
:include-source:
fig, ax = plt.subplots(figsize=(5, 3), layout='constrained')
np.random.seed(19680801)
t = np.arange(200)
x = np.cumsum(np.random.randn(200))
y = np.cumsum(np.random.randn(200))
linesx = ax.plot(t, x, label='Random walk x')
linesy = ax.plot(t, y, label='Random walk y')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Distance [km]')
ax.set_title('Random walk example')
ax.legend()
These methods are relatively straight-forward, though there are a number of :ref:`text_props` that can be set on the text objects, like *fontsize*, *fontname*, *horizontalalignment*. Legends can be much more complicated; see :ref:`legend_guide` for more details.
Note that text can also be added to axes using `~.axes.Axes.text`, and `~.axes.Axes.annotate`. This can be quite sophisticated: see :ref:`text_props` and :ref:`annotations` for more information.
Axes limits, scales, and ticking
--------------------------------
Each Axes has two (or more) `~.axis.Axis` objects, that can be accessed via :attr:`~matplotlib.axes.Axes.xaxis` and :attr:`~matplotlib.axes.Axes.yaxis` properties. These have substantial number of methods on them, and for highly customizable Axis-es it is useful to read the API at `~.axis.Axis`. However, the Axes class offers a number of helpers for the most common of these methods. Indeed, the `~.axes.Axes.set_xlabel`, discussed above, is a helper for the `~.Axis.set_label_text`.
Other important methods set the extent on the axes (`~.axes.Axes.set_xlim`, `~.axes.Axes.set_ylim`), or more fundamentally the scale of the axes. So for instance, we can make an Axis have a logarithmic scale, and zoom in on a sub-portion of the data:
.. plot::
:include-source:
fig, ax = plt.subplots(figsize=(4, 2.5), layout='constrained')
np.random.seed(19680801)
t = np.arange(200)
x = 2**np.cumsum(np.random.randn(200))
linesx = ax.plot(t, x)
ax.set_yscale('log')
ax.set_xlim([20, 180])
The Axes class also has helpers to deal with Axis ticks and their labels. Most straight-forward is `~.axes.Axes.set_xticks` and `~.axes.Axes.set_yticks` which manually set the tick locations and optionally their labels. Minor ticks can be toggled with `~.axes.Axes.minorticks_on` or `~.axes.Axes.minorticks_off`.
Many aspects of Axes ticks and tick labeling can be adjusted using `~.axes.Axes.tick_params`. For instance, to label the top of the axes instead of the bottom,color the ticks red, and color the ticklabels green:
.. plot::
:include-source:
fig, ax = plt.subplots(figsize=(4, 2.5))
ax.plot(np.arange(10))
ax.tick_params(top=True, labeltop=True, color='red', axis='x',
labelcolor='green')
More fine-grained control on ticks, setting scales, and controlling the Axis can be highly customized beyond these Axes-level helpers.
Axes layout
-----------
Sometimes it is important to set the aspect ratio of a plot in data space, which we can do with `~.axes.Axes.set_aspect`:
.. plot::
:include-source:
fig, axs = plt.subplots(ncols=2, figsize=(7, 2.5), layout='constrained')
np.random.seed(19680801)
t = np.arange(200)
x = np.cumsum(np.random.randn(200))
axs[0].plot(t, x)
axs[0].set_title('aspect="auto"')
axs[1].plot(t, x)
axs[1].set_aspect(3)
axs[1].set_title('aspect=3')
|