1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
"""
.. _user_axes_scales:
===========
Axis scales
===========
By default Matplotlib displays data on the axis using a linear scale.
Matplotlib also supports `logarithmic scales
<https://en.wikipedia.org/wiki/Logarithmic_scale>`_, and other less common
scales as well. Usually this can be done directly by using the
`~.axes.Axes.set_xscale` or `~.axes.Axes.set_yscale` methods.
"""
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.scale as mscale
from matplotlib.ticker import FixedLocator, NullFormatter
fig, axs = plt.subplot_mosaic([['linear', 'linear-log'],
['log-linear', 'log-log']], layout='constrained')
x = np.arange(0, 3*np.pi, 0.1)
y = 2 * np.sin(x) + 3
ax = axs['linear']
ax.plot(x, y)
ax.set_xlabel('linear')
ax.set_ylabel('linear')
ax = axs['linear-log']
ax.plot(x, y)
ax.set_yscale('log')
ax.set_xlabel('linear')
ax.set_ylabel('log')
ax = axs['log-linear']
ax.plot(x, y)
ax.set_xscale('log')
ax.set_xlabel('log')
ax.set_ylabel('linear')
ax = axs['log-log']
ax.plot(x, y)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('log')
ax.set_ylabel('log')
# %%
# loglog and semilogx/y
# =====================
#
# The logarithmic axis is used so often that there are a set
# helper functions, that do the same thing: `~.axes.Axes.semilogy`,
# `~.axes.Axes.semilogx`, and `~.axes.Axes.loglog`.
fig, axs = plt.subplot_mosaic([['linear', 'linear-log'],
['log-linear', 'log-log']], layout='constrained')
x = np.arange(0, 3*np.pi, 0.1)
y = 2 * np.sin(x) + 3
ax = axs['linear']
ax.plot(x, y)
ax.set_xlabel('linear')
ax.set_ylabel('linear')
ax.set_title('plot(x, y)')
ax = axs['linear-log']
ax.semilogy(x, y)
ax.set_xlabel('linear')
ax.set_ylabel('log')
ax.set_title('semilogy(x, y)')
ax = axs['log-linear']
ax.semilogx(x, y)
ax.set_xlabel('log')
ax.set_ylabel('linear')
ax.set_title('semilogx(x, y)')
ax = axs['log-log']
ax.loglog(x, y)
ax.set_xlabel('log')
ax.set_ylabel('log')
ax.set_title('loglog(x, y)')
# %%
# Other built-in scales
# =====================
#
# There are other scales that can be used. The list of registered
# scales can be returned from `.scale.get_scale_names`:
print(mscale.get_scale_names())
# %%
#
fig, axs = plt.subplot_mosaic([['asinh', 'symlog'],
['log', 'logit']], layout='constrained')
x = np.arange(0, 1000)
for name, ax in axs.items():
if name in ['asinh', 'symlog']:
yy = x - np.mean(x)
elif name in ['logit']:
yy = (x-np.min(x))
yy = yy / np.max(np.abs(yy))
else:
yy = x
ax.plot(yy, yy)
ax.set_yscale(name)
ax.set_title(name)
# %%
# Optional arguments for scales
# =============================
#
# Some of the default scales have optional arguments. These are
# documented in the API reference for the respective scales at
# `~.matplotlib.scale`. One can change the base of the logarithm
# being plotted (eg 2 below) or the linear threshold range
# for ``'symlog'``.
fig, axs = plt.subplot_mosaic([['log', 'symlog']], layout='constrained',
figsize=(6.4, 3))
for name, ax in axs.items():
if name in ['log']:
ax.plot(x, x)
ax.set_yscale('log', base=2)
ax.set_title('log base=2')
else:
ax.plot(x - np.mean(x), x - np.mean(x))
ax.set_yscale('symlog', linthresh=100)
ax.set_title('symlog linthresh=100')
# %%
#
# Arbitrary function scales
# ============================
#
# Users can define a full scale class and pass that to `~.axes.Axes.set_xscale`
# and `~.axes.Axes.set_yscale` (see :ref:`custom_scale`). A short cut for this
# is to use the 'function' scale, and pass as extra arguments a ``forward`` and
# an ``inverse`` function. The following performs a `Mercator transform
# <https://en.wikipedia.org/wiki/Mercator_projection>`_ to the y-axis.
# Function Mercator transform
def forward(a):
a = np.deg2rad(a)
return np.rad2deg(np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))))
def inverse(a):
a = np.deg2rad(a)
return np.rad2deg(np.arctan(np.sinh(a)))
t = np.arange(0, 170.0, 0.1)
s = t / 2.
fig, ax = plt.subplots(layout='constrained')
ax.plot(t, s, '-', lw=2)
ax.set_yscale('function', functions=(forward, inverse))
ax.set_title('function: Mercator')
ax.grid(True)
ax.set_xlim([0, 180])
ax.yaxis.set_minor_formatter(NullFormatter())
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 90, 10)))
# %%
#
# What is a "scale"?
# ==================
#
# A scale is an object that gets attached to an axis. The class documentation
# is at `~matplotlib.scale`. `~.axes.Axes.set_xscale` and `~.axes.Axes.set_yscale`
# set the scale on the respective Axis objects. You can determine the scale
# on an axis with `~.axis.Axis.get_scale`:
fig, ax = plt.subplots(layout='constrained',
figsize=(3.2, 3))
ax.semilogy(x, x)
print(ax.xaxis.get_scale())
print(ax.yaxis.get_scale())
# %%
#
# Setting a scale does three things. First it defines a transform on the axis
# that maps between data values to position along the axis. This transform can
# be accessed via ``get_transform``:
print(ax.yaxis.get_transform())
# %%
#
# Transforms on the axis are a relatively low-level concept, but is one of the
# important roles played by ``set_scale``.
#
# Setting the scale also sets default tick locators (`~.ticker`) and tick
# formatters appropriate for the scale. An axis with a 'log' scale has a
# `~.ticker.LogLocator` to pick ticks at decade intervals, and a
# `~.ticker.LogFormatter` to use scientific notation on the decades.
print('X axis')
print(ax.xaxis.get_major_locator())
print(ax.xaxis.get_major_formatter())
print('Y axis')
print(ax.yaxis.get_major_locator())
print(ax.yaxis.get_major_formatter())
|