File: axes_scales.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (220 lines) | stat: -rw-r--r-- 5,789 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
.. _user_axes_scales:

===========
Axis scales
===========

By default Matplotlib displays data on the axis using a linear scale.
Matplotlib also supports `logarithmic scales
<https://en.wikipedia.org/wiki/Logarithmic_scale>`_, and other less common
scales as well. Usually this can be done directly by using the
`~.axes.Axes.set_xscale` or `~.axes.Axes.set_yscale` methods.

"""
import matplotlib.pyplot as plt
import numpy as np

import matplotlib.scale as mscale
from matplotlib.ticker import FixedLocator, NullFormatter

fig, axs = plt.subplot_mosaic([['linear', 'linear-log'],
                               ['log-linear', 'log-log']], layout='constrained')

x = np.arange(0, 3*np.pi, 0.1)
y = 2 * np.sin(x) + 3

ax = axs['linear']
ax.plot(x, y)
ax.set_xlabel('linear')
ax.set_ylabel('linear')

ax = axs['linear-log']
ax.plot(x, y)
ax.set_yscale('log')
ax.set_xlabel('linear')
ax.set_ylabel('log')

ax = axs['log-linear']
ax.plot(x, y)
ax.set_xscale('log')
ax.set_xlabel('log')
ax.set_ylabel('linear')

ax = axs['log-log']
ax.plot(x, y)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('log')
ax.set_ylabel('log')

# %%
# loglog and semilogx/y
# =====================
#
# The logarithmic axis is used so often that there are a set
# helper functions, that do the same thing: `~.axes.Axes.semilogy`,
# `~.axes.Axes.semilogx`, and `~.axes.Axes.loglog`.

fig, axs = plt.subplot_mosaic([['linear', 'linear-log'],
                               ['log-linear', 'log-log']], layout='constrained')

x = np.arange(0, 3*np.pi, 0.1)
y = 2 * np.sin(x) + 3

ax = axs['linear']
ax.plot(x, y)
ax.set_xlabel('linear')
ax.set_ylabel('linear')
ax.set_title('plot(x, y)')

ax = axs['linear-log']
ax.semilogy(x, y)
ax.set_xlabel('linear')
ax.set_ylabel('log')
ax.set_title('semilogy(x, y)')

ax = axs['log-linear']
ax.semilogx(x, y)
ax.set_xlabel('log')
ax.set_ylabel('linear')
ax.set_title('semilogx(x, y)')

ax = axs['log-log']
ax.loglog(x, y)
ax.set_xlabel('log')
ax.set_ylabel('log')
ax.set_title('loglog(x, y)')

# %%
# Other built-in scales
# =====================
#
# There are other scales that can be used.  The list of registered
# scales can be returned from `.scale.get_scale_names`:

print(mscale.get_scale_names())

# %%
#

fig, axs = plt.subplot_mosaic([['asinh', 'symlog'],
                               ['log', 'logit']], layout='constrained')

x = np.arange(0, 1000)

for name, ax in axs.items():
    if name in ['asinh', 'symlog']:
        yy = x - np.mean(x)
    elif name in ['logit']:
        yy = (x-np.min(x))
        yy = yy / np.max(np.abs(yy))
    else:
        yy = x

    ax.plot(yy, yy)
    ax.set_yscale(name)
    ax.set_title(name)

# %%
# Optional arguments for scales
# =============================
#
# Some of the default scales have optional arguments.  These are
# documented in the API reference for the respective scales at
# `~.matplotlib.scale`.  One can change the base of the logarithm
# being plotted (eg 2 below) or the linear threshold range
# for ``'symlog'``.

fig, axs = plt.subplot_mosaic([['log', 'symlog']], layout='constrained',
                              figsize=(6.4, 3))

for name, ax in axs.items():
    if name in ['log']:
        ax.plot(x, x)
        ax.set_yscale('log', base=2)
        ax.set_title('log base=2')
    else:
        ax.plot(x - np.mean(x), x - np.mean(x))
        ax.set_yscale('symlog', linthresh=100)
        ax.set_title('symlog linthresh=100')


# %%
#
# Arbitrary function scales
# ============================
#
# Users can define a full scale class and pass that to `~.axes.Axes.set_xscale`
# and `~.axes.Axes.set_yscale` (see :ref:`custom_scale`).  A short cut for this
# is to use the 'function' scale, and pass as extra arguments a ``forward`` and
# an ``inverse`` function.  The following performs a `Mercator transform
# <https://en.wikipedia.org/wiki/Mercator_projection>`_ to the y-axis.

# Function Mercator transform
def forward(a):
    a = np.deg2rad(a)
    return np.rad2deg(np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))))


def inverse(a):
    a = np.deg2rad(a)
    return np.rad2deg(np.arctan(np.sinh(a)))


t = np.arange(0, 170.0, 0.1)
s = t / 2.

fig, ax = plt.subplots(layout='constrained')
ax.plot(t, s, '-', lw=2)

ax.set_yscale('function', functions=(forward, inverse))
ax.set_title('function: Mercator')
ax.grid(True)
ax.set_xlim([0, 180])
ax.yaxis.set_minor_formatter(NullFormatter())
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 90, 10)))


# %%
#
# What is a "scale"?
# ==================
#
# A scale is an object that gets attached to an axis.  The class documentation
# is at `~matplotlib.scale`. `~.axes.Axes.set_xscale` and `~.axes.Axes.set_yscale`
# set the scale on the respective Axis objects.  You can determine the scale
# on an axis with `~.axis.Axis.get_scale`:

fig, ax = plt.subplots(layout='constrained',
                              figsize=(3.2, 3))
ax.semilogy(x, x)

print(ax.xaxis.get_scale())
print(ax.yaxis.get_scale())

# %%
#
# Setting a scale does three things.  First it defines a transform on the axis
# that maps between data values to position along the axis.  This transform can
# be accessed via ``get_transform``:

print(ax.yaxis.get_transform())

# %%
#
# Transforms on the axis are a relatively low-level concept, but is one of the
# important roles played by ``set_scale``.
#
# Setting the scale also sets default tick locators (`~.ticker`) and tick
# formatters appropriate for the scale.   An axis with a 'log' scale has a
# `~.ticker.LogLocator` to pick ticks at decade intervals, and a
# `~.ticker.LogFormatter` to use scientific notation on the decades.

print('X axis')
print(ax.xaxis.get_major_locator())
print(ax.xaxis.get_major_formatter())

print('Y axis')
print(ax.yaxis.get_major_locator())
print(ax.yaxis.get_major_formatter())