File: tight_layout_guide.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (297 lines) | stat: -rw-r--r-- 8,175 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
.. redirect-from:: /tutorial/intermediate/tight_layout_guide

.. _tight_layout_guide:

==================
Tight layout guide
==================

How to use tight-layout to fit plots within your figure cleanly.

*tight_layout* automatically adjusts subplot params so that the
subplot(s) fits in to the figure area. This is an experimental
feature and may not work for some cases. It only checks the extents
of ticklabels, axis labels, and titles.

An alternative to *tight_layout* is :ref:`constrained_layout
<constrainedlayout_guide>`.


Simple example
==============

With the default Axes positioning, the axes title, axis labels, or tick labels
can sometimes go outside the figure area, and thus get clipped.
"""

# sphinx_gallery_thumbnail_number = 7

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['savefig.facecolor'] = "0.8"


def example_plot(ax, fontsize=12):
    ax.plot([1, 2])

    ax.locator_params(nbins=3)
    ax.set_xlabel('x-label', fontsize=fontsize)
    ax.set_ylabel('y-label', fontsize=fontsize)
    ax.set_title('Title', fontsize=fontsize)

plt.close('all')
fig, ax = plt.subplots()
example_plot(ax, fontsize=24)

# %%
# To prevent this, the location of Axes needs to be adjusted. For
# subplots, this can be done manually by adjusting the subplot parameters
# using `.Figure.subplots_adjust`. `.Figure.tight_layout` does this
# automatically.

fig, ax = plt.subplots()
example_plot(ax, fontsize=24)
plt.tight_layout()

# %%
# Note that :func:`matplotlib.pyplot.tight_layout` will only adjust the
# subplot params when it is called.  In order to perform this adjustment each
# time the figure is redrawn, you can call ``fig.set_tight_layout(True)``, or,
# equivalently, set :rc:`figure.autolayout` to ``True``.
#
# When you have multiple subplots, often you see labels of different
# Axes overlapping each other.

plt.close('all')

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

# %%
# :func:`~matplotlib.pyplot.tight_layout` will also adjust spacing between
# subplots to minimize the overlaps.

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
plt.tight_layout()

# %%
# :func:`~matplotlib.pyplot.tight_layout` can take keyword arguments of
# *pad*, *w_pad* and *h_pad*. These control the extra padding around the
# figure border and between subplots. The pads are specified in fraction
# of fontsize.

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

# %%
# :func:`~matplotlib.pyplot.tight_layout` will work even if the sizes of
# subplots are different as far as their grid specification is
# compatible. In the example below, *ax1* and *ax2* are subplots of a 2x2
# grid, while *ax3* is of a 1x2 grid.

plt.close('all')
fig = plt.figure()

ax1 = plt.subplot(221)
ax2 = plt.subplot(223)
ax3 = plt.subplot(122)

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)

plt.tight_layout()

# %%
# It works with subplots created with
# :func:`~matplotlib.pyplot.subplot2grid`. In general, subplots created
# from the gridspec (:ref:`arranging_axes`) will work.

plt.close('all')
fig = plt.figure()

ax1 = plt.subplot2grid((3, 3), (0, 0))
ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

plt.tight_layout()

# %%
# Although not thoroughly tested, it seems to work for subplots with
# aspect != "auto" (e.g., Axes with images).

arr = np.arange(100).reshape((10, 10))

plt.close('all')
fig = plt.figure(figsize=(5, 4))

ax = plt.subplot()
im = ax.imshow(arr, interpolation="none")

plt.tight_layout()

# %%
# Caveats
# =======
#
# * `~matplotlib.pyplot.tight_layout` considers all artists on the Axes by
#   default.  To remove an artist from the layout calculation you can call
#   `.Artist.set_in_layout`.
#
# * ``tight_layout`` assumes that the extra space needed for artists is
#   independent of the original location of Axes. This is often true, but there
#   are rare cases where it is not.
#
# * ``pad=0`` can clip some texts by a few pixels. This may be a bug or
#   a limitation of the current algorithm, and it is not clear why it
#   happens. Meanwhile, use of pad larger than 0.3 is recommended.
#
# * The algorithm of ``tight_layout`` does not necessarily converge,
#   i.e. calling ``tight_layout`` multiple times can lead to slight
#   variations in the layout between the calls.
#
# Use with GridSpec
# =================
#
# GridSpec has its own `.GridSpec.tight_layout` method (the pyplot api
# `.pyplot.tight_layout` also works).

import matplotlib.gridspec as gridspec

plt.close('all')
fig = plt.figure()

gs1 = gridspec.GridSpec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot(ax1)
example_plot(ax2)

gs1.tight_layout(fig)

# %%
# You may provide an optional *rect* parameter, which specifies the bounding
# box that the subplots will be fit inside. The coordinates are in
# normalized figure coordinates and default to (0, 0, 1, 1) (the whole figure).

fig = plt.figure()

gs1 = gridspec.GridSpec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot(ax1)
example_plot(ax2)

gs1.tight_layout(fig, rect=[0, 0, 0.5, 1.0])

# %%
# However, we do not recommend that this be used to manually construct more
# complicated layouts, like having one GridSpec in the left and one in the
# right side of the figure. For these use cases, one should instead take
# advantage of :doc:`/gallery/subplots_axes_and_figures/gridspec_nested`, or
# the :doc:`/gallery/subplots_axes_and_figures/subfigures`.


# %%
# Legends and annotations
# =======================
#
# Pre Matplotlib 2.2, legends and annotations were excluded from the bounding
# box calculations that decide the layout.  Subsequently, these artists were
# added to the calculation, but sometimes it is undesirable to include them.
# For instance in this case it might be good to have the Axes shrink a bit
# to make room for the legend:

fig, ax = plt.subplots(figsize=(4, 3))
lines = ax.plot(range(10), label='A simple plot')
ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
fig.tight_layout()
plt.show()

# %%
# However, sometimes this is not desired (quite often when using
# ``fig.savefig('outname.png', bbox_inches='tight')``).  In order to
# remove the legend from the bounding box calculation, we simply set its
# bounding ``leg.set_in_layout(False)`` and the legend will be ignored.

fig, ax = plt.subplots(figsize=(4, 3))
lines = ax.plot(range(10), label='B simple plot')
leg = ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
leg.set_in_layout(False)
fig.tight_layout()
plt.show()

# %%
# Use with AxesGrid1
# ==================
#
# Limited support for :mod:`mpl_toolkits.axes_grid1` is provided.

from mpl_toolkits.axes_grid1 import Grid

plt.close('all')
fig = plt.figure()
grid = Grid(fig, rect=111, nrows_ncols=(2, 2),
            axes_pad=0.25, label_mode='L',
            )

for ax in grid:
    example_plot(ax)
ax.title.set_visible(False)

plt.tight_layout()

# %%
# Colorbar
# ========
#
# If you create a colorbar with `.Figure.colorbar`, the created colorbar is
# drawn in a Subplot as long as the parent Axes is also a Subplot, so
# `.Figure.tight_layout` will work.

plt.close('all')
arr = np.arange(100).reshape((10, 10))
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")

plt.colorbar(im)

plt.tight_layout()

# %%
# Another option is to use the AxesGrid1 toolkit to
# explicitly create an Axes for the colorbar.

from mpl_toolkits.axes_grid1 import make_axes_locatable

plt.close('all')
arr = np.arange(100).reshape((10, 10))
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")

divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "5%", pad="3%")
plt.colorbar(im, cax=cax)

plt.tight_layout()