1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
"""
.. redirect-from:: /tutorial/intermediate/tight_layout_guide
.. _tight_layout_guide:
==================
Tight layout guide
==================
How to use tight-layout to fit plots within your figure cleanly.
*tight_layout* automatically adjusts subplot params so that the
subplot(s) fits in to the figure area. This is an experimental
feature and may not work for some cases. It only checks the extents
of ticklabels, axis labels, and titles.
An alternative to *tight_layout* is :ref:`constrained_layout
<constrainedlayout_guide>`.
Simple example
==============
With the default Axes positioning, the axes title, axis labels, or tick labels
can sometimes go outside the figure area, and thus get clipped.
"""
# sphinx_gallery_thumbnail_number = 7
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['savefig.facecolor'] = "0.8"
def example_plot(ax, fontsize=12):
ax.plot([1, 2])
ax.locator_params(nbins=3)
ax.set_xlabel('x-label', fontsize=fontsize)
ax.set_ylabel('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)
plt.close('all')
fig, ax = plt.subplots()
example_plot(ax, fontsize=24)
# %%
# To prevent this, the location of Axes needs to be adjusted. For
# subplots, this can be done manually by adjusting the subplot parameters
# using `.Figure.subplots_adjust`. `.Figure.tight_layout` does this
# automatically.
fig, ax = plt.subplots()
example_plot(ax, fontsize=24)
plt.tight_layout()
# %%
# Note that :func:`matplotlib.pyplot.tight_layout` will only adjust the
# subplot params when it is called. In order to perform this adjustment each
# time the figure is redrawn, you can call ``fig.set_tight_layout(True)``, or,
# equivalently, set :rc:`figure.autolayout` to ``True``.
#
# When you have multiple subplots, often you see labels of different
# Axes overlapping each other.
plt.close('all')
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
# %%
# :func:`~matplotlib.pyplot.tight_layout` will also adjust spacing between
# subplots to minimize the overlaps.
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
plt.tight_layout()
# %%
# :func:`~matplotlib.pyplot.tight_layout` can take keyword arguments of
# *pad*, *w_pad* and *h_pad*. These control the extra padding around the
# figure border and between subplots. The pads are specified in fraction
# of fontsize.
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
# %%
# :func:`~matplotlib.pyplot.tight_layout` will work even if the sizes of
# subplots are different as far as their grid specification is
# compatible. In the example below, *ax1* and *ax2* are subplots of a 2x2
# grid, while *ax3* is of a 1x2 grid.
plt.close('all')
fig = plt.figure()
ax1 = plt.subplot(221)
ax2 = plt.subplot(223)
ax3 = plt.subplot(122)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
plt.tight_layout()
# %%
# It works with subplots created with
# :func:`~matplotlib.pyplot.subplot2grid`. In general, subplots created
# from the gridspec (:ref:`arranging_axes`) will work.
plt.close('all')
fig = plt.figure()
ax1 = plt.subplot2grid((3, 3), (0, 0))
ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
plt.tight_layout()
# %%
# Although not thoroughly tested, it seems to work for subplots with
# aspect != "auto" (e.g., Axes with images).
arr = np.arange(100).reshape((10, 10))
plt.close('all')
fig = plt.figure(figsize=(5, 4))
ax = plt.subplot()
im = ax.imshow(arr, interpolation="none")
plt.tight_layout()
# %%
# Caveats
# =======
#
# * `~matplotlib.pyplot.tight_layout` considers all artists on the Axes by
# default. To remove an artist from the layout calculation you can call
# `.Artist.set_in_layout`.
#
# * ``tight_layout`` assumes that the extra space needed for artists is
# independent of the original location of Axes. This is often true, but there
# are rare cases where it is not.
#
# * ``pad=0`` can clip some texts by a few pixels. This may be a bug or
# a limitation of the current algorithm, and it is not clear why it
# happens. Meanwhile, use of pad larger than 0.3 is recommended.
#
# * The algorithm of ``tight_layout`` does not necessarily converge,
# i.e. calling ``tight_layout`` multiple times can lead to slight
# variations in the layout between the calls.
#
# Use with GridSpec
# =================
#
# GridSpec has its own `.GridSpec.tight_layout` method (the pyplot api
# `.pyplot.tight_layout` also works).
import matplotlib.gridspec as gridspec
plt.close('all')
fig = plt.figure()
gs1 = gridspec.GridSpec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])
example_plot(ax1)
example_plot(ax2)
gs1.tight_layout(fig)
# %%
# You may provide an optional *rect* parameter, which specifies the bounding
# box that the subplots will be fit inside. The coordinates are in
# normalized figure coordinates and default to (0, 0, 1, 1) (the whole figure).
fig = plt.figure()
gs1 = gridspec.GridSpec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])
example_plot(ax1)
example_plot(ax2)
gs1.tight_layout(fig, rect=[0, 0, 0.5, 1.0])
# %%
# However, we do not recommend that this be used to manually construct more
# complicated layouts, like having one GridSpec in the left and one in the
# right side of the figure. For these use cases, one should instead take
# advantage of :doc:`/gallery/subplots_axes_and_figures/gridspec_nested`, or
# the :doc:`/gallery/subplots_axes_and_figures/subfigures`.
# %%
# Legends and annotations
# =======================
#
# Pre Matplotlib 2.2, legends and annotations were excluded from the bounding
# box calculations that decide the layout. Subsequently, these artists were
# added to the calculation, but sometimes it is undesirable to include them.
# For instance in this case it might be good to have the Axes shrink a bit
# to make room for the legend:
fig, ax = plt.subplots(figsize=(4, 3))
lines = ax.plot(range(10), label='A simple plot')
ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
fig.tight_layout()
plt.show()
# %%
# However, sometimes this is not desired (quite often when using
# ``fig.savefig('outname.png', bbox_inches='tight')``). In order to
# remove the legend from the bounding box calculation, we simply set its
# bounding ``leg.set_in_layout(False)`` and the legend will be ignored.
fig, ax = plt.subplots(figsize=(4, 3))
lines = ax.plot(range(10), label='B simple plot')
leg = ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
leg.set_in_layout(False)
fig.tight_layout()
plt.show()
# %%
# Use with AxesGrid1
# ==================
#
# Limited support for :mod:`mpl_toolkits.axes_grid1` is provided.
from mpl_toolkits.axes_grid1 import Grid
plt.close('all')
fig = plt.figure()
grid = Grid(fig, rect=111, nrows_ncols=(2, 2),
axes_pad=0.25, label_mode='L',
)
for ax in grid:
example_plot(ax)
ax.title.set_visible(False)
plt.tight_layout()
# %%
# Colorbar
# ========
#
# If you create a colorbar with `.Figure.colorbar`, the created colorbar is
# drawn in a Subplot as long as the parent Axes is also a Subplot, so
# `.Figure.tight_layout` will work.
plt.close('all')
arr = np.arange(100).reshape((10, 10))
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")
plt.colorbar(im)
plt.tight_layout()
# %%
# Another option is to use the AxesGrid1 toolkit to
# explicitly create an Axes for the colorbar.
from mpl_toolkits.axes_grid1 import make_axes_locatable
plt.close('all')
arr = np.arange(100).reshape((10, 10))
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "5%", pad="3%")
plt.colorbar(im, cax=cax)
plt.tight_layout()
|