File: backends.rst

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,352 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 104; sh: 53
file content (338 lines) | stat: -rw-r--r-- 13,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
.. redirect-from:: /users/explain/backends

.. _backends:

========
Backends
========

.. _what-is-a-backend:

What is a backend?
------------------

Backends are used for displaying Matplotlib figures (see :ref:`figure-intro`),
on the screen, or for writing to files. A lot of documentation on the website
and in the mailing lists refers to the "backend" and many new users are
confused by this term. Matplotlib targets many different use cases and output
formats. Some people use Matplotlib interactively from the Python shell and
have plotting windows pop up when they type commands. Some people run `Jupyter
<https://jupyter.org>`_ notebooks and draw inline plots for quick data
analysis. Others embed Matplotlib into graphical user interfaces like PyQt or
PyGObject to build rich applications. Some people use Matplotlib in batch
scripts to generate postscript images from numerical simulations, and still
others run web application servers to dynamically serve up graphs.

To support all of these use cases, Matplotlib can target different
outputs, and each of these capabilities is called a backend; the
"frontend" is the user facing code, i.e., the plotting code, whereas the
"backend" does all the hard work behind-the-scenes to make the figure.
There are two types of backends: user interface backends (for use in
PyQt/PySide, PyGObject, Tkinter, wxPython, or macOS/Cocoa); also referred to
as "interactive backends") and hardcopy backends to make image files
(PNG, SVG, PDF, PS; also referred to as "non-interactive backends").

Selecting a backend
-------------------

There are three ways to configure your backend:

- The :rc:`backend` parameter in your :file:`matplotlibrc` file
- The :envvar:`MPLBACKEND` environment variable
- The function :func:`matplotlib.use`

Below is a more detailed description.

If there is more than one configuration present, the last one from the
list takes precedence; e.g. calling :func:`matplotlib.use()` will override
the setting in your :file:`matplotlibrc`.

Without a backend explicitly set, Matplotlib automatically detects a usable
backend based on what is available on your system and on whether a GUI event
loop is already running.  The first usable backend in the following list is
selected: MacOSX, QtAgg, GTK4Agg, Gtk3Agg, TkAgg, WxAgg, Agg.  The last, Agg,
is a non-interactive backend that can only write to files.  It is used on
Linux, if Matplotlib cannot connect to either an X display or a Wayland
display.

Here is a detailed description of the configuration methods:

#. Setting :rc:`backend` in your :file:`matplotlibrc` file::

       backend : qtagg   # use pyqt with antigrain (agg) rendering

   See also :ref:`customizing`.

#. Setting the :envvar:`MPLBACKEND` environment variable:

   You can set the environment variable either for your current shell or for
   a single script.

   On Unix::

        > export MPLBACKEND=qtagg
        > python simple_plot.py

        > MPLBACKEND=qtagg python simple_plot.py

   On Windows, only the former is possible::

        > set MPLBACKEND=qtagg
        > python simple_plot.py

   Setting this environment variable will override the ``backend`` parameter
   in *any* :file:`matplotlibrc`, even if there is a :file:`matplotlibrc` in
   your current working directory. Therefore, setting :envvar:`MPLBACKEND`
   globally, e.g. in your :file:`.bashrc` or :file:`.profile`, is discouraged
   as it might lead to counter-intuitive behavior.

#. If your script depends on a specific backend you can use the function
   :func:`matplotlib.use`::

      import matplotlib
      matplotlib.use('qtagg')

   This should be done before any figure is created, otherwise Matplotlib may
   fail to switch the backend and raise an ImportError.

   Using `~matplotlib.use` will require changes in your code if users want to
   use a different backend.  Therefore, you should avoid explicitly calling
   `~matplotlib.use` unless absolutely necessary.

.. _the-builtin-backends:

The builtin backends
--------------------

By default, Matplotlib should automatically select a default backend which
allows both interactive work and plotting from scripts, with output to the
screen and/or to a file, so at least initially, you will not need to worry
about the backend.  The most common exception is if your Python distribution
comes without :mod:`tkinter` and you have no other GUI toolkit installed.
This happens with certain Linux distributions, where you need to install a
Linux package named ``python-tk`` (or similar).

If, however, you want to write graphical user interfaces, or a web
application server
(:doc:`/gallery/user_interfaces/web_application_server_sgskip`), or need a
better understanding of what is going on, read on. To make things easily
more customizable for graphical user interfaces, Matplotlib separates
the concept of the renderer (the thing that actually does the drawing)
from the canvas (the place where the drawing goes).  The canonical
renderer for user interfaces is ``Agg`` which uses the `Anti-Grain
Geometry`_ C++ library to make a raster (pixel) image of the figure; it
is used by the ``QtAgg``, ``GTK4Agg``, ``GTK3Agg``, ``wxAgg``, ``TkAgg``, and
``macosx`` backends.  An alternative renderer is based on the Cairo library,
used by ``QtCairo``, etc.

For the rendering engines, users can also distinguish between `vector
<https://en.wikipedia.org/wiki/Vector_graphics>`_ or `raster
<https://en.wikipedia.org/wiki/Raster_graphics>`_ renderers.  Vector
graphics languages issue drawing commands like "draw a line from this
point to this point" and hence are scale free. Raster backends
generate a pixel representation of the line whose accuracy depends on a
DPI setting.

Static backends
^^^^^^^^^^^^^^^

Here is a summary of the Matplotlib renderers (there is an eponymous
backend for each; these are *non-interactive backends*, capable of
writing to a file):

========  =========  =======================================================
Renderer  Filetypes  Description
========  =========  =======================================================
AGG       png        raster_ graphics -- high quality images using the
                     `Anti-Grain Geometry`_ engine.
PDF       pdf        vector_ graphics -- `Portable Document Format`_ output.
PS        ps, eps    vector_ graphics -- PostScript_ output.
SVG       svg        vector_ graphics -- `Scalable Vector Graphics`_ output.
PGF       pgf, pdf   vector_ graphics -- using the pgf_ package.
Cairo     png, ps,   raster_ or vector_ graphics -- using the Cairo_ library
          pdf, svg   (requires pycairo_ or cairocffi_).
========  =========  =======================================================

To save plots using the non-interactive backends, use the
``matplotlib.pyplot.savefig('filename')`` method.


Interactive backends
^^^^^^^^^^^^^^^^^^^^

These are the user interfaces and renderer combinations supported;
these are *interactive backends*, capable of displaying to the screen
and using appropriate renderers from the table above to write to
a file:

========= ================================================================
Backend   Description
========= ================================================================
QtAgg     Agg rendering in a Qt_ canvas (requires PyQt_ or `Qt for Python`_,
          a.k.a. PySide).  This backend can be activated in IPython with
          ``%matplotlib qt``.  The Qt binding can be selected via the
          :envvar:`QT_API` environment variable; see :ref:`QT_bindings` for
          more details.
ipympl    Agg rendering embedded in a Jupyter widget (requires ipympl_).
          This backend can be enabled in a Jupyter notebook with
          ``%matplotlib ipympl`` or ``%matplotlib widget``.  Works with
          Jupyter ``lab`` and ``notebook>=7``.
GTK3Agg   Agg rendering to a GTK_ 3.x canvas (requires PyGObject_ and
          pycairo_).  This backend can be activated in IPython with
          ``%matplotlib gtk3``.
GTK4Agg   Agg rendering to a GTK_ 4.x canvas (requires PyGObject_ and
          pycairo_).  This backend can be activated in IPython with
          ``%matplotlib gtk4``.
macosx    Agg rendering into a Cocoa canvas in macOS.  This backend can be
          activated in IPython with ``%matplotlib osx``.
TkAgg     Agg rendering to a Tk_ canvas (requires TkInter_). This
          backend can be activated in IPython with ``%matplotlib tk``.
nbAgg     Embed an interactive figure in a Jupyter classic notebook.  This
          backend can be enabled in Jupyter notebooks via
          ``%matplotlib notebook`` or ``%matplotlib nbagg``.  Works with
          Jupyter ``notebook<7`` and ``nbclassic``.
WebAgg    On ``show()`` will start a tornado server with an interactive
          figure.
GTK3Cairo Cairo rendering to a GTK_ 3.x canvas (requires PyGObject_ and
          pycairo_).
GTK4Cairo Cairo rendering to a GTK_ 4.x canvas (requires PyGObject_ and
          pycairo_).
wxAgg     Agg rendering to a wxWidgets_ canvas (requires wxPython_ 4).
          This backend can be activated in IPython with ``%matplotlib wx``.
========= ================================================================

.. note::
   The names of builtin backends are case-insensitive; e.g., 'QtAgg' and
   'qtagg' are equivalent.

.. _`Anti-Grain Geometry`: http://agg.sourceforge.net/antigrain.com/
.. _`Portable Document Format`: https://en.wikipedia.org/wiki/Portable_Document_Format
.. _Postscript: https://en.wikipedia.org/wiki/PostScript
.. _`Scalable Vector Graphics`: https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
.. _pgf: https://ctan.org/pkg/pgf
.. _Cairo: https://www.cairographics.org
.. _PyGObject: https://pygobject.gnome.org/
.. _pycairo: https://www.cairographics.org/pycairo/
.. _cairocffi: https://doc.courtbouillon.org/cairocffi/stable/
.. _wxPython: https://www.wxpython.org/
.. _TkInter: https://docs.python.org/3/library/tk.html
.. _PyQt: https://riverbankcomputing.com/software/pyqt/intro
.. _`Qt for Python`: https://doc.qt.io/qtforpython/
.. _Qt: https://qt.io/
.. _GTK: https://www.gtk.org/
.. _Tk: https://www.tcl.tk/
.. _wxWidgets: https://www.wxwidgets.org/
.. _ipympl: https://www.matplotlib.org/ipympl

.. _ipympl_install:

ipympl
^^^^^^

The ipympl backend is in a separate package that must be explicitly installed
if you wish to use it, for example:

.. code-block:: bash

   pip install ipympl

or

.. code-block:: bash

   conda install ipympl -c conda-forge

See `installing ipympl <https://matplotlib.org/ipympl/installing.html>`__ for more details.

Using non-builtin backends
--------------------------
More generally, any importable backend can be selected by using any of the
methods above. If ``name.of.the.backend`` is the module containing the
backend, use ``module://name.of.the.backend`` as the backend name, e.g.
``matplotlib.use('module://name.of.the.backend')``.

Information for backend implementers is available at :ref:`writing_backend_interface`.

.. _figures-not-showing:

Debugging the figure windows not showing
----------------------------------------

Sometimes things do not work as expected, usually during an install.

If you are using a Notebook or integrated development environment (see :ref:`notebooks-and-ides`),
please consult their documentation for debugging figures not working in their
environments.

If you are using one of Matplotlib's graphics backends (see :ref:`standalone-scripts-and-interactive-use`), make sure you know which
one is being used:

.. code-block:: python3

   import matplotlib

   print(matplotlib.get_backend())

Try a simple plot to see if the GUI opens:

.. code-block:: python3

   import matplotlib
   import matplotlib.pyplot as plt

   print(matplotlib.get_backend())
   plt.plot((1, 4, 6))
   plt.show()

If it does not, you perhaps have an installation problem.  A good step at this
point is to ensure that your GUI toolkit is installed properly, taking
Matplotlib out of the testing.  Almost all GUI toolkits have a small test
program that can be run to test basic functionality.  If this test fails, try re-installing.

QtAgg, QtCairo, Qt5Agg, and Qt5Cairo
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Test ``PyQt5``.

If you have ``PySide`` or ``PyQt6`` installed rather than ``PyQt5``, just change the import
accordingly:

.. code-block:: bash

   python -c "from PyQt5.QtWidgets import *; app = QApplication([]); win = QMainWindow(); win.show(); app.exec()"


TkAgg and TkCairo
^^^^^^^^^^^^^^^^^

Test ``tkinter``:

.. code-block:: bash

   python3 -c "from tkinter import Tk; Tk().mainloop()"

GTK3Agg, GTK4Agg, GTK3Cairo, GTK4Cairo
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Test ``Gtk``:

.. code-block:: bash

   python3 -c "from gi.repository import Gtk; win = Gtk.Window(); win.connect('destroy', Gtk.main_quit); win.show(); Gtk.main()"

wxAgg and wxCairo
^^^^^^^^^^^^^^^^^

Test ``wx``:

.. code-block:: python3

   import wx

   app = wx.App(False)  # Create a new app, don't redirect stdout/stderr to a window.
   frame = wx.Frame(None, wx.ID_ANY, "Hello World") # A Frame is a top-level window.
   frame.Show(True)     # Show the frame.
   app.MainLoop()

If the test works for your desired backend but you still cannot get Matplotlib to display a figure, then contact us (see
:ref:`get-help`).