1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
"""
.. redirect-from:: /tutorials/introductory/usage
.. redirect-from:: /tutorials/introductory/quick_start
.. _quick_start:
*****************
Quick start guide
*****************
This tutorial covers some basic usage patterns and best practices to
help you get started with Matplotlib.
"""
import matplotlib.pyplot as plt
import numpy as np
# sphinx_gallery_thumbnail_number = 3
# %%
#
# A simple example
# ================
#
# Matplotlib graphs your data on `.Figure`\s (e.g., windows, Jupyter
# widgets, etc.), each of which can contain one or more `~.axes.Axes`, an
# area where points can be specified in terms of x-y coordinates (or theta-r
# in a polar plot, x-y-z in a 3D plot, etc.). The simplest way of
# creating a Figure with an Axes is using `.pyplot.subplots`. We can then use
# `.Axes.plot` to draw some data on the Axes, and `~.pyplot.show` to display
# the figure:
fig, ax = plt.subplots() # Create a figure containing a single Axes.
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the Axes.
plt.show() # Show the figure.
# %%
#
# Depending on the environment you are working in, ``plt.show()`` can be left
# out. This is for example the case with Jupyter notebooks, which
# automatically show all figures created in a code cell.
#
# .. _figure_parts:
#
# Parts of a Figure
# =================
#
# Here are the components of a Matplotlib Figure.
#
# .. image:: ../../_static/anatomy.png
#
# :class:`~matplotlib.figure.Figure`
# ----------------------------------
#
# The **whole** figure. The Figure keeps
# track of all the child :class:`~matplotlib.axes.Axes`, a group of
# 'special' Artists (titles, figure legends, colorbars, etc.), and
# even nested subfigures.
#
# Typically, you'll create a new Figure through one of the following
# functions::
#
# fig = plt.figure() # an empty figure with no Axes
# fig, ax = plt.subplots() # a figure with a single Axes
# fig, axs = plt.subplots(2, 2) # a figure with a 2x2 grid of Axes
# # a figure with one Axes on the left, and two on the right:
# fig, axs = plt.subplot_mosaic([['left', 'right_top'],
# ['left', 'right_bottom']])
#
# `~.pyplot.subplots()` and `~.pyplot.subplot_mosaic` are convenience functions
# that additionally create Axes objects inside the Figure, but you can also
# manually add Axes later on.
#
# For more on Figures, including panning and zooming, see :ref:`figure-intro`.
#
# :class:`~matplotlib.axes.Axes`
# ------------------------------
#
# An Axes is an Artist attached to a Figure that contains a region for
# plotting data, and usually includes two (or three in the case of 3D)
# :class:`~matplotlib.axis.Axis` objects (be aware of the difference
# between **Axes** and **Axis**) that provide ticks and tick labels to
# provide scales for the data in the Axes. Each :class:`~.axes.Axes` also
# has a title
# (set via :meth:`~matplotlib.axes.Axes.set_title`), an x-label (set via
# :meth:`~matplotlib.axes.Axes.set_xlabel`), and a y-label set via
# :meth:`~matplotlib.axes.Axes.set_ylabel`).
#
# The `~.axes.Axes` methods are the primary interface for configuring
# most parts of your plot (adding data, controlling axis scales and
# limits, adding labels etc.).
#
# :class:`~matplotlib.axis.Axis`
# ------------------------------
#
# These objects set the scale and limits and generate ticks (the marks
# on the Axis) and ticklabels (strings labeling the ticks). The location
# of the ticks is determined by a `~matplotlib.ticker.Locator` object and the
# ticklabel strings are formatted by a `~matplotlib.ticker.Formatter`. The
# combination of the correct `.Locator` and `.Formatter` gives very fine
# control over the tick locations and labels.
#
# :class:`~matplotlib.artist.Artist`
# ----------------------------------
#
# Basically, everything visible on the Figure is an Artist (even
# `.Figure`, `Axes <.axes.Axes>`, and `~.axis.Axis` objects). This includes
# `.Text` objects, `.Line2D` objects, :mod:`.collections` objects, `.Patch`
# objects, etc. When the Figure is rendered, all of the
# Artists are drawn to the **canvas**. Most Artists are tied to an Axes; such
# an Artist cannot be shared by multiple Axes, or moved from one to another.
#
# .. _input_types:
#
# Types of inputs to plotting functions
# =====================================
#
# Plotting functions expect `numpy.array` or `numpy.ma.masked_array` as
# input, or objects that can be passed to `numpy.asarray`.
# Classes that are similar to arrays ('array-like') such as `pandas`
# data objects and `numpy.matrix` may not work as intended. Common convention
# is to convert these to `numpy.array` objects prior to plotting.
# For example, to convert a `numpy.matrix` ::
#
# b = np.matrix([[1, 2], [3, 4]])
# b_asarray = np.asarray(b)
#
# Most methods will also parse a string-indexable object like a *dict*, a
# `structured numpy array`_, or a `pandas.DataFrame`. Matplotlib allows you
# to provide the ``data`` keyword argument and generate plots passing the
# strings corresponding to the *x* and *y* variables.
#
# .. _structured numpy array: https://numpy.org/doc/stable/user/basics.rec.html#structured-arrays # noqa: E501
np.random.seed(19680801) # seed the random number generator.
data = {'a': np.arange(50),
'c': np.random.randint(0, 50, 50),
'd': np.random.randn(50)}
data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
ax.scatter('a', 'b', c='c', s='d', data=data)
ax.set_xlabel('entry a')
ax.set_ylabel('entry b')
# %%
# .. _coding_styles:
#
# Coding styles
# =============
#
# The explicit and the implicit interfaces
# ----------------------------------------
#
# As noted above, there are essentially two ways to use Matplotlib:
#
# - Explicitly create Figures and Axes, and call methods on them (the
# "object-oriented (OO) style").
# - Rely on pyplot to implicitly create and manage the Figures and Axes, and
# use pyplot functions for plotting.
#
# See :ref:`api_interfaces` for an explanation of the tradeoffs between the
# implicit and explicit interfaces.
#
# So one can use the OO-style
x = np.linspace(0, 2, 100) # Sample data.
# Note that even in the OO-style, we use `.pyplot.figure` to create the Figure.
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
ax.plot(x, x, label='linear') # Plot some data on the Axes.
ax.plot(x, x**2, label='quadratic') # Plot more data on the Axes...
ax.plot(x, x**3, label='cubic') # ... and some more.
ax.set_xlabel('x label') # Add an x-label to the Axes.
ax.set_ylabel('y label') # Add a y-label to the Axes.
ax.set_title("Simple Plot") # Add a title to the Axes.
ax.legend() # Add a legend.
# %%
# or the pyplot-style:
x = np.linspace(0, 2, 100) # Sample data.
plt.figure(figsize=(5, 2.7), layout='constrained')
plt.plot(x, x, label='linear') # Plot some data on the (implicit) Axes.
plt.plot(x, x**2, label='quadratic') # etc.
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()
# %%
# (In addition, there is a third approach, for the case when embedding
# Matplotlib in a GUI application, which completely drops pyplot, even for
# figure creation. See the corresponding section in the gallery for more info:
# :ref:`user_interfaces`.)
#
# Matplotlib's documentation and examples use both the OO and the pyplot
# styles. In general, we suggest using the OO style, particularly for
# complicated plots, and functions and scripts that are intended to be reused
# as part of a larger project. However, the pyplot style can be very convenient
# for quick interactive work.
#
# .. note::
#
# You may find older examples that use the ``pylab`` interface,
# via ``from pylab import *``. This approach is strongly deprecated.
#
# Making a helper functions
# -------------------------
#
# If you need to make the same plots over and over again with different data
# sets, or want to easily wrap Matplotlib methods, use the recommended
# signature function below.
def my_plotter(ax, data1, data2, param_dict):
"""
A helper function to make a graph.
"""
out = ax.plot(data1, data2, **param_dict)
return out
# %%
# which you would then use twice to populate two subplots:
data1, data2, data3, data4 = np.random.randn(4, 100) # make 4 random data sets
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(5, 2.7))
my_plotter(ax1, data1, data2, {'marker': 'x'})
my_plotter(ax2, data3, data4, {'marker': 'o'})
# %%
# Note that if you want to install these as a python package, or any other
# customizations you could use one of the many templates on the web;
# Matplotlib has one at `mpl-cookiecutter
# <https://github.com/matplotlib/matplotlib-extension-cookiecutter>`_
#
#
# Styling Artists
# ===============
#
# Most plotting methods have styling options for the Artists, accessible either
# when a plotting method is called, or from a "setter" on the Artist. In the
# plot below we manually set the *color*, *linewidth*, and *linestyle* of the
# Artists created by `~.Axes.plot`, and we set the linestyle of the second line
# after the fact with `~.Line2D.set_linestyle`.
fig, ax = plt.subplots(figsize=(5, 2.7))
x = np.arange(len(data1))
ax.plot(x, np.cumsum(data1), color='blue', linewidth=3, linestyle='--')
l, = ax.plot(x, np.cumsum(data2), color='orange', linewidth=2)
l.set_linestyle(':')
# %%
# Colors
# ------
#
# Matplotlib has a very flexible array of colors that are accepted for most
# Artists; see :ref:`allowable color definitions <colors_def>` for a
# list of specifications. Some Artists will take multiple colors. i.e. for
# a `~.Axes.scatter` plot, the edge of the markers can be different colors
# from the interior:
fig, ax = plt.subplots(figsize=(5, 2.7))
ax.scatter(data1, data2, s=50, facecolor='C0', edgecolor='k')
# %%
# Linewidths, linestyles, and markersizes
# ---------------------------------------
#
# Line widths are typically in typographic points (1 pt = 1/72 inch) and
# available for Artists that have stroked lines. Similarly, stroked lines
# can have a linestyle. See the :doc:`linestyles example
# </gallery/lines_bars_and_markers/linestyles>`.
#
# Marker size depends on the method being used. `~.Axes.plot` specifies
# markersize in points, and is generally the "diameter" or width of the
# marker. `~.Axes.scatter` specifies markersize as approximately
# proportional to the visual area of the marker. There is an array of
# markerstyles available as string codes (see :mod:`~.matplotlib.markers`), or
# users can define their own `~.MarkerStyle` (see
# :doc:`/gallery/lines_bars_and_markers/marker_reference`):
fig, ax = plt.subplots(figsize=(5, 2.7))
ax.plot(data1, 'o', label='data1')
ax.plot(data2, 'd', label='data2')
ax.plot(data3, 'v', label='data3')
ax.plot(data4, 's', label='data4')
ax.legend()
# %%
#
# Labelling plots
# ===============
#
# Axes labels and text
# --------------------
#
# `~.Axes.set_xlabel`, `~.Axes.set_ylabel`, and `~.Axes.set_title` are used to
# add text in the indicated locations (see :ref:`text_intro`
# for more discussion). Text can also be directly added to plots using
# `~.Axes.text`:
mu, sigma = 115, 15
x = mu + sigma * np.random.randn(10000)
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
# the histogram of the data
n, bins, patches = ax.hist(x, 50, density=True, facecolor='C0', alpha=0.75)
ax.set_xlabel('Length [cm]')
ax.set_ylabel('Probability')
ax.set_title('Aardvark lengths\n (not really)')
ax.text(75, .025, r'$\mu=115,\ \sigma=15$')
ax.axis([55, 175, 0, 0.03])
ax.grid(True)
# %%
# All of the `~.Axes.text` functions return a `matplotlib.text.Text`
# instance. Just as with lines above, you can customize the properties by
# passing keyword arguments into the text functions::
#
# t = ax.set_xlabel('my data', fontsize=14, color='red')
#
# These properties are covered in more detail in
# :ref:`text_props`.
#
# Using mathematical expressions in text
# --------------------------------------
#
# Matplotlib accepts TeX equation expressions in any text expression.
# For example to write the expression :math:`\sigma_i=15` in the title,
# you can write a TeX expression surrounded by dollar signs::
#
# ax.set_title(r'$\sigma_i=15$')
#
# where the ``r`` preceding the title string signifies that the string is a
# *raw* string and not to treat backslashes as python escapes.
# Matplotlib has a built-in TeX expression parser and
# layout engine, and ships its own math fonts – for details see
# :ref:`mathtext`. You can also use LaTeX directly to format
# your text and incorporate the output directly into your display figures or
# saved postscript – see :ref:`usetex`.
#
# Annotations
# -----------
#
# We can also annotate points on a plot, often by connecting an arrow pointing
# to *xy*, to a piece of text at *xytext*:
fig, ax = plt.subplots(figsize=(5, 2.7))
t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2 * np.pi * t)
line, = ax.plot(t, s, lw=2)
ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor='black', shrink=0.05))
ax.set_ylim(-2, 2)
# %%
# In this basic example, both *xy* and *xytext* are in data coordinates.
# There are a variety of other coordinate systems one can choose -- see
# :ref:`annotations-tutorial` and :ref:`plotting-guide-annotation` for
# details. More examples also can be found in
# :doc:`/gallery/text_labels_and_annotations/annotation_demo`.
#
# Legends
# -------
#
# Often we want to identify lines or markers with a `.Axes.legend`:
fig, ax = plt.subplots(figsize=(5, 2.7))
ax.plot(np.arange(len(data1)), data1, label='data1')
ax.plot(np.arange(len(data2)), data2, label='data2')
ax.plot(np.arange(len(data3)), data3, 'd', label='data3')
ax.legend()
# %%
# Legends in Matplotlib are quite flexible in layout, placement, and what
# Artists they can represent. They are discussed in detail in
# :ref:`legend_guide`.
#
# Axis scales and ticks
# =====================
#
# Each Axes has two (or three) `~.axis.Axis` objects representing the x- and
# y-axis. These control the *scale* of the Axis, the tick *locators* and the
# tick *formatters*. Additional Axes can be attached to display further Axis
# objects.
#
# Scales
# ------
#
# In addition to the linear scale, Matplotlib supplies non-linear scales,
# such as a log-scale. Since log-scales are used so much there are also
# direct methods like `~.Axes.loglog`, `~.Axes.semilogx`, and
# `~.Axes.semilogy`. There are a number of scales (see
# :doc:`/gallery/scales/scales` for other examples). Here we set the scale
# manually:
fig, axs = plt.subplots(1, 2, figsize=(5, 2.7), layout='constrained')
xdata = np.arange(len(data1)) # make an ordinal for this
data = 10**data1
axs[0].plot(xdata, data)
axs[1].set_yscale('log')
axs[1].plot(xdata, data)
# %%
# The scale sets the mapping from data values to spacing along the Axis. This
# happens in both directions, and gets combined into a *transform*, which
# is the way that Matplotlib maps from data coordinates to Axes, Figure, or
# screen coordinates. See :ref:`transforms_tutorial`.
#
# Tick locators and formatters
# ----------------------------
#
# Each Axis has a tick *locator* and *formatter* that choose where along the
# Axis objects to put tick marks. A simple interface to this is
# `~.Axes.set_xticks`:
fig, axs = plt.subplots(2, 1, layout='constrained')
axs[0].plot(xdata, data1)
axs[0].set_title('Automatic ticks')
axs[1].plot(xdata, data1)
axs[1].set_xticks(np.arange(0, 100, 30), ['zero', '30', 'sixty', '90'])
axs[1].set_yticks([-1.5, 0, 1.5]) # note that we don't need to specify labels
axs[1].set_title('Manual ticks')
# %%
# Different scales can have different locators and formatters; for instance
# the log-scale above uses `~.LogLocator` and `~.LogFormatter`. See
# :doc:`/gallery/ticks/tick-locators` and
# :doc:`/gallery/ticks/tick-formatters` for other formatters and
# locators and information for writing your own.
#
# Plotting dates and strings
# --------------------------
#
# Matplotlib can handle plotting arrays of dates and arrays of strings, as
# well as floating point numbers. These get special locators and formatters
# as appropriate. For dates:
from matplotlib.dates import ConciseDateFormatter
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
dates = np.arange(np.datetime64('2021-11-15'), np.datetime64('2021-12-25'),
np.timedelta64(1, 'h'))
data = np.cumsum(np.random.randn(len(dates)))
ax.plot(dates, data)
ax.xaxis.set_major_formatter(ConciseDateFormatter(ax.xaxis.get_major_locator()))
# %%
# For more information see the date examples
# (e.g. :doc:`/gallery/text_labels_and_annotations/date`)
#
# For strings, we get categorical plotting (see:
# :doc:`/gallery/lines_bars_and_markers/categorical_variables`).
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
categories = ['turnips', 'rutabaga', 'cucumber', 'pumpkins']
ax.bar(categories, np.random.rand(len(categories)))
# %%
# One caveat about categorical plotting is that some methods of parsing
# text files return a list of strings, even if the strings all represent
# numbers or dates. If you pass 1000 strings, Matplotlib will think you
# meant 1000 categories and will add 1000 ticks to your plot!
#
#
# Additional Axis objects
# ------------------------
#
# Plotting data of different magnitude in one chart may require
# an additional y-axis. Such an Axis can be created by using
# `~.Axes.twinx` to add a new Axes with an invisible x-axis and a y-axis
# positioned at the right (analogously for `~.Axes.twiny`). See
# :doc:`/gallery/subplots_axes_and_figures/two_scales` for another example.
#
# Similarly, you can add a `~.Axes.secondary_xaxis` or
# `~.Axes.secondary_yaxis` having a different scale than the main Axis to
# represent the data in different scales or units. See
# :doc:`/gallery/subplots_axes_and_figures/secondary_axis` for further
# examples.
fig, (ax1, ax3) = plt.subplots(1, 2, figsize=(7, 2.7), layout='constrained')
l1, = ax1.plot(t, s)
ax2 = ax1.twinx()
l2, = ax2.plot(t, range(len(t)), 'C1')
ax2.legend([l1, l2], ['Sine (left)', 'Straight (right)'])
ax3.plot(t, s)
ax3.set_xlabel('Angle [rad]')
ax4 = ax3.secondary_xaxis('top', (np.rad2deg, np.deg2rad))
ax4.set_xlabel('Angle [°]')
# %%
# Color mapped data
# =================
#
# Often we want to have a third dimension in a plot represented by colors in
# a colormap. Matplotlib has a number of plot types that do this:
from matplotlib.colors import LogNorm
X, Y = np.meshgrid(np.linspace(-3, 3, 128), np.linspace(-3, 3, 128))
Z = (1 - X/2 + X**5 + Y**3) * np.exp(-X**2 - Y**2)
fig, axs = plt.subplots(2, 2, layout='constrained')
pc = axs[0, 0].pcolormesh(X, Y, Z, vmin=-1, vmax=1, cmap='RdBu_r')
fig.colorbar(pc, ax=axs[0, 0])
axs[0, 0].set_title('pcolormesh()')
co = axs[0, 1].contourf(X, Y, Z, levels=np.linspace(-1.25, 1.25, 11))
fig.colorbar(co, ax=axs[0, 1])
axs[0, 1].set_title('contourf()')
pc = axs[1, 0].imshow(Z**2 * 100, cmap='plasma', norm=LogNorm(vmin=0.01, vmax=100))
fig.colorbar(pc, ax=axs[1, 0], extend='both')
axs[1, 0].set_title('imshow() with LogNorm()')
pc = axs[1, 1].scatter(data1, data2, c=data3, cmap='RdBu_r')
fig.colorbar(pc, ax=axs[1, 1], extend='both')
axs[1, 1].set_title('scatter()')
# %%
# Colormaps
# ---------
#
# These are all examples of Artists that derive from `~.ScalarMappable`
# objects. They all can set a linear mapping between *vmin* and *vmax* into
# the colormap specified by *cmap*. Matplotlib has many colormaps to choose
# from (:ref:`colormaps`) you can make your
# own (:ref:`colormap-manipulation`) or download as
# `third-party packages
# <https://matplotlib.org/mpl-third-party/#colormaps-and-styles>`_.
#
# Normalizations
# --------------
#
# Sometimes we want a non-linear mapping of the data to the colormap, as
# in the ``LogNorm`` example above. We do this by supplying the
# ScalarMappable with the *norm* argument instead of *vmin* and *vmax*.
# More normalizations are shown at :ref:`colormapnorms`.
#
# Colorbars
# ---------
#
# Adding a `~.Figure.colorbar` gives a key to relate the color back to the
# underlying data. Colorbars are figure-level Artists, and are attached to
# a ScalarMappable (where they get their information about the norm and
# colormap) and usually steal space from a parent Axes. Placement of
# colorbars can be complex: see
# :ref:`colorbar_placement` for
# details. You can also change the appearance of colorbars with the
# *extend* keyword to add arrows to the ends, and *shrink* and *aspect* to
# control the size. Finally, the colorbar will have default locators
# and formatters appropriate to the norm. These can be changed as for
# other Axis objects.
#
#
# Working with multiple Figures and Axes
# ======================================
#
# You can open multiple Figures with multiple calls to
# ``fig = plt.figure()`` or ``fig2, ax = plt.subplots()``. By keeping the
# object references you can add Artists to either Figure.
#
# Multiple Axes can be added a number of ways, but the most basic is
# ``plt.subplots()`` as used above. One can achieve more complex layouts,
# with Axes objects spanning columns or rows, using `~.pyplot.subplot_mosaic`.
fig, axd = plt.subplot_mosaic([['upleft', 'right'],
['lowleft', 'right']], layout='constrained')
axd['upleft'].set_title('upleft')
axd['lowleft'].set_title('lowleft')
axd['right'].set_title('right')
# %%
# Matplotlib has quite sophisticated tools for arranging Axes: See
# :ref:`arranging_axes` and :ref:`mosaic`.
#
#
# More reading
# ============
#
# For more plot types see :doc:`Plot types </plot_types/index>` and the
# :doc:`API reference </api/index>`, in particular the
# :doc:`Axes API </api/axes_api>`.
|