1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
r"""
.. redirect-from:: /tutorials/text/mathtext
.. _mathtext:
Writing mathematical expressions
================================
Matplotlib implements a lightweight TeX expression parser and layout engine and
*Mathtext* is the subset of Tex markup that this engine supports. Note that
Matplotlib can also render all text directly using TeX if :rc:`text.usetex` is
*True*; see :ref:`usetex` for more details. Mathtext support is available
if :rc:`text.usetex` is *False*.
Any string can be processed as Mathtext by placing the string inside a pair of
dollar signs ``'$'``. Mathtext often contains many backslashes ``'\'``; so that
the backslashes do not need to be escaped, Mathtext is often written using raw
strings. For example:
"""
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(3, 3), linewidth=1, edgecolor='black')
fig.text(.2, .7, "plain text: alpha > beta")
fig.text(.2, .5, "Mathtext: $\\alpha > \\beta$")
fig.text(.2, .3, r"raw string Mathtext: $\alpha > \beta$")
# %%
# .. seealso::
#
# :doc:`Mathtext example </gallery/text_labels_and_annotations/mathtext_demo>`
#
# TeX does *not* need to be installed to use Mathtext because Matplotlib ships
# with the Mathtext parser and engine. The Mathtext layout engine is a fairly
# direct adaptation of the layout algorithms in Donald Knuth's TeX. To render
# mathematical text using a different TeX engine, see :ref:`usetex`.
#
# .. note::
# To generate html output in documentation that will exactly match the output
# generated by ``mathtext``, use the `matplotlib.sphinxext.mathmpl` Sphinx
# extension.
#
#
# Special characters
# ------------------
#
# Mathtext must be placed between a pair of (US) dollar signs ``'$'``. A literal
# dollar symbol ``'$'`` in a string containing Mathtext must be escaped using a
# backslash: ``'\$'``. A string may contain multiple pairs of dollar signs,
# resulting in multiple Mathtext expressions. Strings with an odd number of
# dollar signs are rendered solely as plain text.
fig = plt.figure(figsize=(3, 3), linewidth=1, edgecolor='black')
fig.suptitle("Number of unescaped $")
fig.text(.1, .7, r"odd: $ \alpha $ = $1")
fig.text(.1, .5, r"even: $ \beta $= $ 2 $")
fig.text(.1, .3, r'odd: $ \gamma $= \$3 $')
fig.text(.1, .1, r'even: $ \delta $ = $ \$4 $')
# %%
# While Mathtext aims for compatibility with regular TeX, it diverges on when
# special characters need to be escaped. In TeX the dollar sign must be escaped
# ``'\$'`` in non-math text, while in Matplotlib the dollar sign must be
# escaped when writing Mathtext.
#
# These other special characters are also escaped in non-math TeX, while in
# Matplotlib their behavior is dependent on how :rc:`text.usetex` is set::
#
# # $ % & ~ _ ^ \ { } \( \) \[ \]
#
# See the :ref:`usetex tutorial <usetex>` for more information.
#
#
# Subscripts and superscripts
# ---------------------------
# To make subscripts and superscripts, use the ``'_'`` and ``'^'`` symbols::
#
# r'$\alpha_i > \beta_i$'
#
# .. math::
#
# \alpha_i > \beta_i
#
# To display multi-letter subscripts or superscripts correctly,
# you should put them in curly braces ``{...}``::
#
# r'$\alpha^{ic} > \beta_{ic}$'
#
# .. math::
#
# \alpha^{ic} > \beta_{ic}
#
# Some symbols automatically put their sub/superscripts under and over the
# operator. For example, to write the sum of :mathmpl:`x_i` from :mathmpl:`0` to
# :mathmpl:`\infty`, you could do::
#
# r'$\sum_{i=0}^\infty x_i$'
#
# .. math::
#
# \sum_{i=0}^\infty x_i
#
# Fractions, binomials, and stacked numbers
# -----------------------------------------
# Fractions, binomials, and stacked numbers can be created with the
# ``\frac{}{}``, ``\binom{}{}`` and ``\genfrac{}{}{}{}{}{}`` commands,
# respectively::
#
# r'$\frac{3}{4} \binom{3}{4} \genfrac{}{}{0}{}{3}{4}$'
#
# produces
#
# .. math::
#
# \frac{3}{4} \binom{3}{4} \genfrac{}{}{0pt}{}{3}{4}
#
# Fractions can be arbitrarily nested::
#
# r'$\frac{5 - \frac{1}{x}}{4}$'
#
# produces
#
# .. math::
#
# \frac{5 - \frac{1}{x}}{4}
#
# Note that special care needs to be taken to place parentheses and brackets
# around fractions. Doing things the obvious way produces brackets that are too
# small::
#
# r'$(\frac{5 - \frac{1}{x}}{4})$'
#
# .. math::
#
# (\frac{5 - \frac{1}{x}}{4})
#
# The solution is to precede the bracket with ``\left`` and ``\right`` to inform
# the parser that those brackets encompass the entire object.::
#
# r'$\left(\frac{5 - \frac{1}{x}}{4}\right)$'
#
# .. math::
#
# \left(\frac{5 - \frac{1}{x}}{4}\right)
#
# Radicals
# --------
# Radicals can be produced with the ``\sqrt[]{}`` command. For example::
#
# r'$\sqrt{2}$'
#
# .. math::
#
# \sqrt{2}
#
# Any base can (optionally) be provided inside square brackets. Note that the
# base must be a simple expression, and cannot contain layout commands such as
# fractions or sub/superscripts::
#
# r'$\sqrt[3]{x}$'
#
# .. math::
#
# \sqrt[3]{x}
#
# .. _mathtext-fonts:
#
# Fonts
# -----
#
# The default font is *italics* for mathematical symbols.
#
# This default can be changed using :rc:`mathtext.default`. For setting rcParams,
# see :ref:`customizing`. For example, setting the default to ``regular`` allows
# you to use the same font for math text and regular non-math text.
#
# To change fonts, e.g., to write "sin" in a Roman font, enclose the text in a
# font command::
#
# r'$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$'
#
# .. math::
#
# s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)
#
# More conveniently, many commonly used function names that are typeset in
# a Roman font have shortcuts. So the expression above could be written as
# follows::
#
# r'$s(t) = \mathcal{A}\sin(2 \omega t)$'
#
# .. math::
#
# s(t) = \mathcal{A}\sin(2 \omega t)
#
# Here "s" and "t" are variable in italics font (default), "sin" is in Roman
# font, and the amplitude "A" is in calligraphy font. Note in the example above
# the calligraphy ``A`` is squished into the ``sin``. You can use a spacing
# command to add a little whitespace between them::
#
# r's(t) = \mathcal{A}\/\sin(2 \omega t)'
#
# .. Here we cheat a bit: for HTML math rendering, Sphinx relies on MathJax which
# doesn't actually support the italic correction (\/); instead, use a thin
# space (\,) which is supported.
#
# .. math::
#
# s(t) = \mathcal{A}\,\sin(2 \omega t)
#
# Mathtext can use DejaVu Sans (default), DejaVu Serif, Computer Modern fonts
# from (La)TeX, `STIX <http://www.stixfonts.org/>`_ fonts which are designed
# to blend well with Times, or a Unicode font that you provide. The Mathtext
# font can be selected via :rc:`mathtext.fontset`.
#
# The choices available with all fonts are:
#
# ========================= ================================
# Command Result
# ========================= ================================
# ``\mathrm{Roman}`` :mathmpl:`\mathrm{Roman}`
# ``\mathit{Italic}`` :mathmpl:`\mathit{Italic}`
# ``\mathtt{Typewriter}`` :mathmpl:`\mathtt{Typewriter}`
# ``\mathcal{CALLIGRAPHY}`` :mathmpl:`\mathcal{CALLIGRAPHY}`
# ========================= ================================
#
# .. rstcheck: ignore-directives=role
# .. role:: math-stix(mathmpl)
# :fontset: stix
#
# When using the `STIX <http://www.stixfonts.org/>`_ fonts, you also have the
# choice of:
#
# ================================ =========================================
# Command Result
# ================================ =========================================
# ``\mathbb{blackboard}`` :math-stix:`\mathbb{blackboard}`
# ``\mathrm{\mathbb{blackboard}}`` :math-stix:`\mathrm{\mathbb{blackboard}}`
# ``\mathfrak{Fraktur}`` :math-stix:`\mathfrak{Fraktur}`
# ``\mathsf{sansserif}`` :math-stix:`\mathsf{sansserif}`
# ``\mathrm{\mathsf{sansserif}}`` :math-stix:`\mathrm{\mathsf{sansserif}}`
# ``\mathbfit{bolditalic}`` :math-stix:`\mathbfit{bolditalic}`
# ================================ =========================================
#
# There are also five global "font sets" to choose from, which are
# selected using the ``mathtext.fontset`` parameter in :ref:`matplotlibrc
# <matplotlibrc-sample>`.
#
# ``dejavusans``: DejaVu Sans
# .. mathmpl::
# :fontset: dejavusans
#
# \mathcal{R} \prod_{i=\alpha}^{\infty} a_i \sin\left(2\pi fx_i\right)
#
# ``dejavuserif``: DejaVu Serif
# .. mathmpl::
# :fontset: dejavuserif
#
# \mathcal{R} \prod_{i=\alpha}^{\infty} a_i \sin\left(2\pi fx_i\right)
#
# ``cm``: Computer Modern (TeX)
# .. mathmpl::
# :fontset: cm
#
# \mathcal{R} \prod_{i=\alpha}^{\infty} a_i \sin\left(2\pi fx_i\right)
#
# ``stix``: STIX (designed to blend well with Times)
# .. mathmpl::
# :fontset: stix
#
# \mathcal{R} \prod_{i=\alpha}^{\infty} a_i \sin\left(2\pi fx_i\right)
#
# ``stixsans``: STIX sans-serif
# .. mathmpl::
# :fontset: stixsans
#
# \mathcal{R} \prod_{i=\alpha}^{\infty} a_i \sin\left(2\pi fx_i\right)
#
# Additionally, you can use ``\mathdefault{...}`` or its alias
# ``\mathregular{...}`` to use the font used for regular text outside of
# Mathtext. There are a number of limitations to this approach, most notably
# that far fewer symbols will be available, but it can be useful to make math
# expressions blend well with other text in the plot.
#
# For compatibility with popular packages, ``\text{...}`` is available and uses the
# ``\mathrm{...}`` font, but otherwise retains spaces and renders - as a dash
# (not minus).
#
# Custom fonts
# ^^^^^^^^^^^^
# Mathtext also provides a way to use custom fonts for math. This method is
# fairly tricky to use, and should be considered an experimental feature for
# patient users only. By setting :rc:`mathtext.fontset` to ``custom``,
# you can then set the following parameters, which control which font file to use
# for a particular set of math characters.
#
# ============================== =================================
# Parameter Corresponds to
# ============================== =================================
# ``mathtext.it`` ``\mathit{}`` or default italic
# ``mathtext.rm`` ``\mathrm{}`` Roman (upright)
# ``mathtext.tt`` ``\mathtt{}`` Typewriter (monospace)
# ``mathtext.bf`` ``\mathbf{}`` bold
# ``mathtext.bfit`` ``\mathbfit{}`` bold italic
# ``mathtext.cal`` ``\mathcal{}`` calligraphic
# ``mathtext.sf`` ``\mathsf{}`` sans-serif
# ============================== =================================
#
# Each parameter should be set to a fontconfig font descriptor, as defined in
# :ref:`fonts`. The fonts used should have a Unicode mapping in order to find
# any non-Latin characters, such as Greek. If you want to use a math symbol
# that is not contained in your custom fonts, you can set
# :rc:`mathtext.fallback` to either ``'cm'``, ``'stix'`` or ``'stixsans'``
# which will cause the Mathtext system to use
# characters from an alternative font whenever a particular
# character cannot be found in the custom font.
#
# Note that the math glyphs specified in Unicode have evolved over time, and
# many fonts may not have glyphs in the correct place for Mathtext.
#
# Accents
# -------
# An accent command may precede any symbol to add an accent above it. There are
# long and short forms for some of them.
#
# ============================== =================================
# Command Result
# ============================== =================================
# ``\acute a`` or ``\'a`` :mathmpl:`\acute a`
# ``\bar a`` :mathmpl:`\bar a`
# ``\breve a`` :mathmpl:`\breve a`
# ``\dot a`` or ``\.a`` :mathmpl:`\dot a`
# ``\ddot a`` or ``\''a`` :mathmpl:`\ddot a`
# ``\dddot a`` :mathmpl:`\dddot a`
# ``\ddddot a`` :mathmpl:`\ddddot a`
# ``\grave a`` or ``\`a`` :mathmpl:`\grave a`
# ``\hat a`` or ``\^a`` :mathmpl:`\hat a`
# ``\tilde a`` or ``\~a`` :mathmpl:`\tilde a`
# ``\vec a`` :mathmpl:`\vec a`
# ``\overline{abc}`` :mathmpl:`\overline{abc}`
# ============================== =================================
#
# In addition, there are two special accents that automatically adjust to the
# width of the symbols below:
#
# ============================== =================================
# Command Result
# ============================== =================================
# ``\widehat{xyz}`` :mathmpl:`\widehat{xyz}`
# ``\widetilde{xyz}`` :mathmpl:`\widetilde{xyz}`
# ============================== =================================
#
# Care should be taken when putting accents on lower-case i's and j's. Note
# that in the following ``\imath`` is used to avoid the extra dot over the i::
#
# r"$\hat i\ \ \hat \imath$"
#
# .. math::
#
# \hat i\ \ \hat \imath
#
# Symbols
# -------
# You can also use a large number of the TeX symbols, as in ``\infty``,
# ``\leftarrow``, ``\sum``, ``\int``.
#
# .. math_symbol_table::
#
# If a particular symbol does not have a name (as is true of many of the more
# obscure symbols in the STIX fonts), Unicode characters can also be used::
#
# r'$\u23ce$'
|