1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
"""
.. redirect-from:: /tutorials/text/text_intro
.. _text_intro:
==================
Text in Matplotlib
==================
Matplotlib has extensive text support, including support for
mathematical expressions, truetype support for raster and
vector outputs, newline separated text with arbitrary
rotations, and Unicode support.
Because it embeds fonts directly in output documents, e.g., for postscript
or PDF, what you see on the screen is what you get in the hardcopy.
`FreeType <https://www.freetype.org/>`_ support
produces very nice, antialiased fonts, that look good even at small
raster sizes. Matplotlib includes its own
:mod:`matplotlib.font_manager` (thanks to Paul Barrett), which
implements a cross platform, `W3C <https://www.w3.org/>`_
compliant font finding algorithm.
The user has a great deal of control over text properties (font size, font
weight, text location and color, etc.) with sensible defaults set in
the :ref:`rc file <customizing>`.
And significantly, for those interested in mathematical
or scientific figures, Matplotlib implements a large number of TeX
math symbols and commands, supporting :ref:`mathematical expressions
<mathtext>` anywhere in your figure.
Basic text commands
===================
The following commands are used to create text in the implicit and explicit
interfaces (see :ref:`api_interfaces` for an explanation of the tradeoffs):
=================== =================== ======================================
implicit API explicit API description
=================== =================== ======================================
`~.pyplot.text` `~.Axes.text` Add text at an arbitrary location of
the `~matplotlib.axes.Axes`.
`~.pyplot.annotate` `~.Axes.annotate` Add an annotation, with an optional
arrow, at an arbitrary location of the
`~matplotlib.axes.Axes`.
`~.pyplot.xlabel` `~.Axes.set_xlabel` Add a label to the
`~matplotlib.axes.Axes`\\'s x-axis.
`~.pyplot.ylabel` `~.Axes.set_ylabel` Add a label to the
`~matplotlib.axes.Axes`\\'s y-axis.
`~.pyplot.title` `~.Axes.set_title` Add a title to the
`~matplotlib.axes.Axes`.
`~.pyplot.figtext` `~.Figure.text` Add text at an arbitrary location of
the `.Figure`.
`~.pyplot.suptitle` `~.Figure.suptitle` Add a title to the `.Figure`.
=================== =================== ======================================
All of these functions create and return a `.Text` instance, which can be
configured with a variety of font and other properties. The example below
shows all of these commands in action, and more detail is provided in the
sections that follow.
"""
import matplotlib.pyplot as plt
import matplotlib
fig = plt.figure()
ax = fig.add_subplot()
fig.subplots_adjust(top=0.85)
# Set titles for the figure and the subplot respectively
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')
ax.set_title('axes title')
ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')
# Set both x- and y-axis limits to [0, 10] instead of default [0, 1]
ax.axis([0, 10, 0, 10])
ax.text(3, 8, 'boxed italics text in data coords', style='italic',
bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 10})
ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)
ax.text(3, 2, 'Unicode: Institut für Festkörperphysik')
ax.text(0.95, 0.01, 'colored text in axes coords',
verticalalignment='bottom', horizontalalignment='right',
transform=ax.transAxes,
color='green', fontsize=15)
ax.plot([2], [1], 'o')
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),
arrowprops=dict(facecolor='black', shrink=0.05))
plt.show()
# %%
# Labels for x- and y-axis
# ========================
#
# Specifying the labels for the x- and y-axis is straightforward, via the
# `~matplotlib.axes.Axes.set_xlabel` and `~matplotlib.axes.Axes.set_ylabel`
# methods.
import matplotlib.pyplot as plt
import numpy as np
x1 = np.linspace(0.0, 5.0, 100)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Damped oscillation (V)')
plt.show()
# %%
# The x- and y-labels are automatically placed so that they clear the x- and
# y-ticklabels. Compare the plot below with that above, and note the y-label
# is to the left of the one above.
fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1*10000)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Damped oscillation (V)')
plt.show()
# %%
# If you want to move the labels, you can specify the *labelpad* keyword
# argument, where the value is points (1/72", the same unit used to specify
# font sizes).
fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1*10000)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Damped oscillation (V)', labelpad=18)
plt.show()
# %%
# Alternatively, the labels accept all the `.Text` keyword arguments, including
# *position*, via which we can manually specify the label positions. Here we
# put the xlabel to the far left of the axis. Note, that the y-coordinate of
# this position has no effect - to adjust the y-position we need to use the
# *labelpad* keyword argument.
fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1)
ax.set_xlabel('Time (s)', position=(0., 1e6), horizontalalignment='left')
ax.set_ylabel('Damped oscillation (V)')
plt.show()
# %%
# All the labelling in this tutorial can be changed by manipulating the
# `matplotlib.font_manager.FontProperties` method, or by named keyword
# arguments to `~matplotlib.axes.Axes.set_xlabel`.
from matplotlib.font_manager import FontProperties
font = FontProperties(family='Times New Roman', style='italic')
fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1)
ax.set_xlabel('Time (s)', fontsize='large', fontweight='bold')
ax.set_ylabel('Damped oscillation (V)', fontproperties=font)
plt.show()
# %%
# Finally, we can use native TeX rendering in all text objects and have
# multiple lines:
fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.2, left=0.2)
ax.plot(x1, np.cumsum(y1**2))
ax.set_xlabel('Time (s) \n This was a long experiment')
ax.set_ylabel(r'$\int\ Y^2\ dt\ \ (V^2 s)$')
plt.show()
# %%
# Titles
# ======
#
# Subplot titles are set in much the same way as labels, but there is
# the *loc* keyword argument that can change the position and justification
# (the default value is "center").
fig, axs = plt.subplots(3, 1, figsize=(5, 6), tight_layout=True)
locs = ['center', 'left', 'right']
for ax, loc in zip(axs, locs):
ax.plot(x1, y1)
ax.set_title('Title with loc at ' + loc, loc=loc)
plt.show()
# %%
# Vertical spacing for titles is controlled via :rc:`axes.titlepad`.
# Setting to a different value moves the title.
fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(top=0.8)
ax.plot(x1, y1)
ax.set_title('Vertically offset title', pad=30)
plt.show()
# %%
# Ticks and ticklabels
# ====================
#
# Placing ticks and ticklabels is a very tricky aspect of making a figure.
# Matplotlib does its best to accomplish the task automatically, but it also
# offers a very flexible framework for determining the choices for tick
# locations, and how they are labelled.
#
# Terminology
# ^^^^^^^^^^^
#
# *Axes* have a `matplotlib.axis.Axis` object for the ``ax.xaxis`` and
# ``ax.yaxis`` that contain the information about how the labels in the axis
# are laid out.
#
# The axis API is explained in detail in the documentation to
# `~matplotlib.axis`.
#
# An Axis object has major and minor ticks. The Axis has
# `.Axis.set_major_locator` and `.Axis.set_minor_locator` methods that use the
# data being plotted to determine the location of major and minor ticks. There
# are also `.Axis.set_major_formatter` and `.Axis.set_minor_formatter` methods
# that format the tick labels.
#
# Simple ticks
# ^^^^^^^^^^^^
#
# It is often convenient to simply define the
# tick values, and sometimes the tick labels, overriding the default
# locators and formatters. However, this is discouraged because it breaks
# interactive navigation of the plot. It also can reset the axis limits: note
# that the second plot has the ticks we asked for, including ones that are
# well outside the automatic view limits.
fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
axs[1].xaxis.set_ticks(np.arange(0., 8.1, 2.))
plt.show()
# %%
# We can of course fix this after the fact, but it does highlight a
# weakness of hard-coding the ticks. This example also changes the format
# of the ticks:
fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
ticks = np.arange(0., 8.1, 2.)
# list comprehension to get all tick labels...
tickla = [f'{tick:1.2f}' for tick in ticks]
axs[1].xaxis.set_ticks(ticks)
axs[1].xaxis.set_ticklabels(tickla)
axs[1].set_xlim(axs[0].get_xlim())
plt.show()
# %%
# Tick locators and formatters
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Instead of making a list of all the ticklabels, we could have
# used `matplotlib.ticker.StrMethodFormatter` (new-style ``str.format()``
# format string) or `matplotlib.ticker.FormatStrFormatter` (old-style '%'
# format string) and passed it to the ``ax.xaxis``. A
# `matplotlib.ticker.StrMethodFormatter` can also be created by passing a
# ``str`` without having to explicitly create the formatter.
fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
ticks = np.arange(0., 8.1, 2.)
axs[1].xaxis.set_ticks(ticks)
axs[1].xaxis.set_major_formatter('{x:1.1f}')
axs[1].set_xlim(axs[0].get_xlim())
plt.show()
# %%
# And of course we could have used a non-default locator to set the
# tick locations. Note we still pass in the tick values, but the
# x-limit fix used above is *not* needed.
fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
locator = matplotlib.ticker.FixedLocator(ticks)
axs[1].xaxis.set_major_locator(locator)
axs[1].xaxis.set_major_formatter('±{x}°')
plt.show()
# %%
# The default formatter is the `matplotlib.ticker.MaxNLocator` called as
# ``ticker.MaxNLocator(self, nbins='auto', steps=[1, 2, 2.5, 5, 10])``.
# The ``steps`` argument contains a list of multiples that can be used for
# tick values. In this case, 2, 4, 6 would be acceptable ticks,
# as would 20, 40, 60 or 0.2, 0.4, 0.6. However, 3, 6, 9 would not be
# acceptable because 3 doesn't appear in the list of steps.
#
# Setting ``nbins=auto`` uses an algorithm to determine how many ticks will
# be acceptable based on the axis length. The fontsize of the
# ticklabel is taken into account, but the length of the tick string
# is not (because it's not yet known.) In the bottom row, the
# ticklabels are quite large, so we set ``nbins=4`` to make the
# labels fit in the right-hand plot.
fig, axs = plt.subplots(2, 2, figsize=(8, 5), tight_layout=True)
for n, ax in enumerate(axs.flat):
ax.plot(x1*10., y1)
formatter = matplotlib.ticker.FormatStrFormatter('%1.1f')
locator = matplotlib.ticker.MaxNLocator(nbins='auto', steps=[1, 4, 10])
axs[0, 1].xaxis.set_major_locator(locator)
axs[0, 1].xaxis.set_major_formatter(formatter)
formatter = matplotlib.ticker.FormatStrFormatter('%1.5f')
locator = matplotlib.ticker.AutoLocator()
axs[1, 0].xaxis.set_major_formatter(formatter)
axs[1, 0].xaxis.set_major_locator(locator)
formatter = matplotlib.ticker.FormatStrFormatter('%1.5f')
locator = matplotlib.ticker.MaxNLocator(nbins=4)
axs[1, 1].xaxis.set_major_formatter(formatter)
axs[1, 1].xaxis.set_major_locator(locator)
plt.show()
# %%
# Finally, we can specify functions for the formatter using
# `matplotlib.ticker.FuncFormatter`. Further, like
# `matplotlib.ticker.StrMethodFormatter`, passing a function will
# automatically create a `matplotlib.ticker.FuncFormatter`.
def formatoddticks(x, pos):
"""Format odd tick positions."""
if x % 2:
return f'{x:1.2f}'
else:
return ''
fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.plot(x1, y1)
locator = matplotlib.ticker.MaxNLocator(nbins=6)
ax.xaxis.set_major_formatter(formatoddticks)
ax.xaxis.set_major_locator(locator)
plt.show()
# %%
# Dateticks
# ^^^^^^^^^
#
# Matplotlib can accept `datetime.datetime` and `numpy.datetime64`
# objects as plotting arguments. Dates and times require special
# formatting, which can often benefit from manual intervention. In
# order to help, dates have special locators and formatters,
# defined in the `matplotlib.dates` module.
#
# The following simple example illustrates this concept. Note how we
# rotate the tick labels so that they don't overlap.
import datetime
fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
base = datetime.datetime(2017, 1, 1, 0, 0, 1)
time = [base + datetime.timedelta(days=x) for x in range(len(x1))]
ax.plot(time, y1)
ax.tick_params(axis='x', rotation=70)
plt.show()
# %%
# We can pass a format to `matplotlib.dates.DateFormatter`. If two tick labels
# are very close together, we can use the `.dates.DayLocator` class, which
# allows us to specify a list of days of the month to use. Similar formatters
# are listed in the `matplotlib.dates` module.
import matplotlib.dates as mdates
locator = mdates.DayLocator(bymonthday=[1, 15])
formatter = mdates.DateFormatter('%b %d')
fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.plot(time, y1)
ax.tick_params(axis='x', rotation=70)
plt.show()
# %%
# Legends and annotations
# =======================
#
# - :ref:`legend_guide`
# - :ref:`annotations`
#
|