1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
=============================================
What's new in Matplotlib 3.7.0 (Feb 13, 2023)
=============================================
For a list of all of the issues and pull requests since the last revision, see
the :ref:`github-stats`.
.. contents:: Table of Contents
:depth: 4
.. toctree::
:maxdepth: 4
Plotting and Annotation improvements
====================================
``hatch`` parameter for pie
---------------------------
`~matplotlib.axes.Axes.pie` now accepts a *hatch* keyword that takes as input
a hatch or list of hatches:
.. plot::
:include-source: true
:alt: Two pie charts, identified as ax1 and ax2, both have a small blue slice, a medium orange slice, and a large green slice. ax1 has a dot hatching on the small slice, a small open circle hatching on the medium slice, and a large open circle hatching on the large slice. ax2 has the same large open circle with a dot hatch on every slice.
fig, (ax1, ax2) = plt.subplots(ncols=2)
x = [10, 30, 60]
ax1.pie(x, hatch=['.', 'o', 'O'])
ax2.pie(x, hatch='.O')
ax1.set_title("hatch=['.', 'o', 'O']")
ax2.set_title("hatch='.O'")
Polar plot errors drawn in polar coordinates
--------------------------------------------
Caps and error lines are now drawn with respect to polar coordinates,
when plotting errorbars on polar plots.
.. figure:: /gallery/pie_and_polar_charts/images/sphx_glr_polar_error_caps_001.png
:target: ../../gallery/pie_and_polar_charts/polar_error_caps.html
Additional format string options in `~matplotlib.axes.Axes.bar_label`
---------------------------------------------------------------------
The ``fmt`` argument of `~matplotlib.axes.Axes.bar_label` now accepts
{}-style format strings:
.. plot::
:include-source: true
import matplotlib.pyplot as plt
fruit_names = ['Coffee', 'Salted Caramel', 'Pistachio']
fruit_counts = [4000, 2000, 7000]
fig, ax = plt.subplots()
bar_container = ax.bar(fruit_names, fruit_counts)
ax.set(ylabel='pints sold', title='Gelato sales by flavor', ylim=(0, 8000))
ax.bar_label(bar_container, fmt='{:,.0f}')
It also accepts callables:
.. plot::
:include-source: true
animal_names = ['Lion', 'Gazelle', 'Cheetah']
mph_speed = [50, 60, 75]
fig, ax = plt.subplots()
bar_container = ax.bar(animal_names, mph_speed)
ax.set(ylabel='speed in MPH', title='Running speeds', ylim=(0, 80))
ax.bar_label(
bar_container, fmt=lambda x: '{:.1f} km/h'.format(x * 1.61)
)
``ellipse`` boxstyle option for annotations
-------------------------------------------
The ``'ellipse'`` option for boxstyle can now be used to create annotations
with an elliptical outline. It can be used as a closed curve shape for
longer texts instead of the ``'circle'`` boxstyle which can get quite big.
.. plot::
:include-source: true
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(5, 5))
t = ax.text(0.5, 0.5, "elliptical box",
ha="center", size=15,
bbox=dict(boxstyle="ellipse,pad=0.3"))
The *extent* of ``imshow`` can now be expressed with units
----------------------------------------------------------
The *extent* parameter of `~.axes.Axes.imshow` and `~.AxesImage.set_extent`
can now be expressed with units.
.. plot::
:include-source: true
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots(layout='constrained')
date_first = np.datetime64('2020-01-01', 'D')
date_last = np.datetime64('2020-01-11', 'D')
arr = [[i+j for i in range(10)] for j in range(10)]
ax.imshow(arr, origin='lower', extent=[0, 10, date_first, date_last])
plt.show()
Reversed order of legend entries
--------------------------------
The order of legend entries can now be reversed by passing ``reverse=True`` to
`~.Axes.legend`.
``pcolormesh`` accepts RGB(A) colors
------------------------------------
The `~.Axes.pcolormesh` method can now handle explicit colors
specified with RGB(A) values. To specify colors, the array must be 3D
with a shape of ``(M, N, [3, 4])``.
.. plot::
:include-source: true
import matplotlib.pyplot as plt
import numpy as np
colors = np.linspace(0, 1, 90).reshape((5, 6, 3))
plt.pcolormesh(colors)
plt.show()
View current appearance settings for ticks, tick labels, and gridlines
----------------------------------------------------------------------
The new `~matplotlib.axis.Axis.get_tick_params` method can be used to
retrieve the appearance settings that will be applied to any
additional ticks, tick labels, and gridlines added to the plot:
.. code-block:: pycon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.yaxis.set_tick_params(labelsize=30, labelcolor='red',
... direction='out', which='major')
>>> ax.yaxis.get_tick_params(which='major')
{'direction': 'out',
'left': True,
'right': False,
'labelleft': True,
'labelright': False,
'gridOn': False,
'labelsize': 30,
'labelcolor': 'red'}
>>> ax.yaxis.get_tick_params(which='minor')
{'left': True,
'right': False,
'labelleft': True,
'labelright': False,
'gridOn': False}
Style files can be imported from third-party packages
-----------------------------------------------------
Third-party packages can now distribute style files that are globally available
as follows. Assume that a package is importable as ``import mypackage``, with
a ``mypackage/__init__.py`` module. Then a ``mypackage/presentation.mplstyle``
style sheet can be used as ``plt.style.use("mypackage.presentation")``.
The implementation does not actually import ``mypackage``, making this process
safe against possible import-time side effects. Subpackages (e.g.
``dotted.package.name``) are also supported.
Improvements to 3D Plotting
===========================
3D plot pan and zoom buttons
----------------------------
The pan and zoom buttons in the toolbar of 3D plots are now enabled.
Unselect both to rotate the plot. When the zoom button is pressed,
zoom in by using the left mouse button to draw a bounding box, and
out by using the right mouse button to draw the box. When zooming a
3D plot, the current view aspect ratios are kept fixed.
*adjustable* keyword argument for setting equal aspect ratios in 3D
-------------------------------------------------------------------
While setting equal aspect ratios for 3D plots, users can choose to modify
either the data limits or the bounding box in parity with 2D Axes.
.. plot::
:include-source: true
import matplotlib.pyplot as plt
import numpy as np
from itertools import combinations, product
aspects = ('auto', 'equal', 'equalxy', 'equalyz', 'equalxz')
fig, axs = plt.subplots(1, len(aspects), subplot_kw={'projection': '3d'},
figsize=(12, 6))
# Draw rectangular cuboid with side lengths [4, 3, 5]
r = [0, 1]
scale = np.array([4, 3, 5])
pts = combinations(np.array(list(product(r, r, r))), 2)
for start, end in pts:
if np.sum(np.abs(start - end)) == r[1] - r[0]:
for ax in axs:
ax.plot3D(*zip(start*scale, end*scale), color='C0')
# Set the aspect ratios
for i, ax in enumerate(axs):
ax.set_aspect(aspects[i], adjustable='datalim')
# Alternatively: ax.set_aspect(aspects[i], adjustable='box')
# which will change the box aspect ratio instead of axis data limits.
ax.set_title(f"set_aspect('{aspects[i]}')")
plt.show()
``Poly3DCollection`` supports shading
-------------------------------------
It is now possible to shade a `.Poly3DCollection`. This is useful if the
polygons are obtained from e.g. a 3D model.
.. plot::
:include-source: true
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
# Define 3D shape
block = np.array([
[[1, 1, 0],
[1, 0, 0],
[0, 1, 0]],
[[1, 1, 0],
[1, 1, 1],
[1, 0, 0]],
[[1, 1, 0],
[1, 1, 1],
[0, 1, 0]],
[[1, 0, 0],
[1, 1, 1],
[0, 1, 0]]
])
ax = plt.subplot(projection='3d')
pc = Poly3DCollection(block, facecolors='b', shade=True)
ax.add_collection(pc)
plt.show()
rcParam for 3D pane color
-------------------------
The rcParams :rc:`axes3d.xaxis.panecolor`, :rc:`axes3d.yaxis.panecolor`,
:rc:`axes3d.zaxis.panecolor` can be used to change the color of the background
panes in 3D plots. Note that it is often beneficial to give them slightly
different shades to obtain a "3D effect" and to make them slightly transparent
(alpha < 1).
.. plot::
:include-source: true
import matplotlib.pyplot as plt
with plt.rc_context({'axes3d.xaxis.panecolor': (0.9, 0.0, 0.0, 0.5),
'axes3d.yaxis.panecolor': (0.7, 0.0, 0.0, 0.5),
'axes3d.zaxis.panecolor': (0.8, 0.0, 0.0, 0.5)}):
fig = plt.figure()
fig.add_subplot(projection='3d')
Figure and Axes Layout
======================
``colorbar`` now has a *location* keyword argument
--------------------------------------------------
The ``colorbar`` method now supports a *location* keyword argument to more
easily position the color bar. This is useful when providing your own inset
axes using the *cax* keyword argument and behaves similar to the case where
axes are not provided (where the *location* keyword is passed through).
*orientation* and *ticklocation* are no longer required as they are
determined by *location*. *ticklocation* can still be provided if the
automatic setting is not preferred. (*orientation* can also be provided but
must be compatible with the *location*.)
An example is:
.. plot::
:include-source: true
import matplotlib.pyplot as plt
import numpy as np
rng = np.random.default_rng(19680801)
imdata = rng.random((10, 10))
fig, ax = plt.subplots(layout='constrained')
im = ax.imshow(imdata)
fig.colorbar(im, cax=ax.inset_axes([0, 1.05, 1, 0.05]),
location='top')
Figure legends can be placed outside figures using constrained_layout
---------------------------------------------------------------------
Constrained layout will make space for Figure legends if they are specified
by a *loc* keyword argument that starts with the string "outside". The
codes are unique from axes codes, in that "outside upper right" will
make room at the top of the figure for the legend, whereas
"outside right upper" will make room on the right-hand side of the figure.
See :ref:`legend_guide` for details.
Per-subplot keyword arguments in ``subplot_mosaic``
----------------------------------------------------
It is now possible to pass keyword arguments through to Axes creation in each
specific call to ``add_subplot`` in `.Figure.subplot_mosaic` and
`.pyplot.subplot_mosaic` :
.. plot::
:include-source: true
fig, axd = plt.subplot_mosaic(
"AB;CD",
per_subplot_kw={
"A": {"projection": "polar"},
("C", "D"): {"xscale": "log"},
"B": {"projection": "3d"},
},
)
This is particularly useful for creating mosaics with mixed projections, but
any keyword arguments can be passed through.
``subplot_mosaic`` no longer provisional
----------------------------------------
The API on `.Figure.subplot_mosaic` and `.pyplot.subplot_mosaic` are now
considered stable and will change under Matplotlib's normal deprecation
process.
Widget Improvements
===================
Custom styling of button widgets
--------------------------------
Additional custom styling of button widgets may be achieved via the
*label_props* and *radio_props* arguments to `.RadioButtons`; and the
*label_props*, *frame_props*, and *check_props* arguments to `.CheckButtons`.
.. plot::
:include-source: true
from matplotlib.widgets import CheckButtons, RadioButtons
fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(5, 2), width_ratios=[1, 2])
default_rb = RadioButtons(ax[0, 0], ['Apples', 'Oranges'])
styled_rb = RadioButtons(ax[0, 1], ['Apples', 'Oranges'],
label_props={'color': ['red', 'orange'],
'fontsize': [16, 20]},
radio_props={'edgecolor': ['red', 'orange'],
'facecolor': ['mistyrose', 'peachpuff']})
default_cb = CheckButtons(ax[1, 0], ['Apples', 'Oranges'],
actives=[True, True])
styled_cb = CheckButtons(ax[1, 1], ['Apples', 'Oranges'],
actives=[True, True],
label_props={'color': ['red', 'orange'],
'fontsize': [16, 20]},
frame_props={'edgecolor': ['red', 'orange'],
'facecolor': ['mistyrose', 'peachpuff']},
check_props={'color': ['darkred', 'darkorange']})
ax[0, 0].set_title('Default')
ax[0, 1].set_title('Stylized')
Blitting in Button widgets
--------------------------
The `.Button`, `.CheckButtons`, and `.RadioButtons` widgets now support
blitting for faster rendering, on backends that support it, by passing
``useblit=True`` to the constructor. Blitting is enabled by default on
supported backends.
Other Improvements
==================
Source links can be shown or hidden for each Sphinx plot directive
------------------------------------------------------------------
The :doc:`Sphinx plot directive </api/sphinxext_plot_directive_api>`
(``.. plot::``) now supports a ``:show-source-link:`` option to show or hide
the link to the source code for each plot. The default is set using the
``plot_html_show_source_link`` variable in :file:`conf.py` (which
defaults to True).
Figure hooks
------------
The new :rc:`figure.hooks` provides a mechanism to register
arbitrary customizations on pyplot figures; it is a list of
"dotted.module.name:dotted.callable.name" strings specifying functions
that are called on each figure created by `.pyplot.figure`; these
functions can e.g. attach callbacks or modify the toolbar. See
:doc:`/gallery/user_interfaces/mplcvd` for an example of toolbar customization.
New & Improved Narrative Documentation
======================================
* Brand new :ref:`Animations <animations>` tutorial.
* New grouped and stacked `bar chart <../../gallery/index.html#lines_bars_and_markers>`_ examples.
* New section for new contributors and reorganized git instructions in the :ref:`contributing guide<contributing>`.
* Restructured :ref:`annotations` tutorial.
|