1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
=============================================
What's new in Matplotlib 3.9.0 (May 15, 2024)
=============================================
For a list of all of the issues and pull requests since the last revision, see the
:ref:`github-stats-3-9-0`.
.. contents:: Table of Contents
:depth: 4
.. toctree::
:maxdepth: 4
Plotting and Annotation improvements
====================================
``Axes.inset_axes`` is no longer experimental
---------------------------------------------
`.Axes.inset_axes` is considered stable for use.
Legend support for Boxplot
--------------------------
Boxplots now support a *label* parameter to create legend entries. Legend labels can be
passed as a list of strings to label multiple boxes in a single `.Axes.boxplot` call:
.. plot::
:include-source:
:alt: Example of creating 3 boxplots and assigning legend labels as a sequence.
np.random.seed(19680801)
fruit_weights = [
np.random.normal(130, 10, size=100),
np.random.normal(125, 20, size=100),
np.random.normal(120, 30, size=100),
]
labels = ['peaches', 'oranges', 'tomatoes']
colors = ['peachpuff', 'orange', 'tomato']
fig, ax = plt.subplots()
ax.set_ylabel('fruit weight (g)')
bplot = ax.boxplot(fruit_weights,
patch_artist=True, # fill with color
label=labels)
# fill with colors
for patch, color in zip(bplot['boxes'], colors):
patch.set_facecolor(color)
ax.set_xticks([])
ax.legend()
Or as a single string to each individual `.Axes.boxplot`:
.. plot::
:include-source:
:alt: Example of creating 2 boxplots and assigning each legend label as a string.
fig, ax = plt.subplots()
data_A = np.random.random((100, 3))
data_B = np.random.random((100, 3)) + 0.2
pos = np.arange(3)
ax.boxplot(data_A, positions=pos - 0.2, patch_artist=True, label='Box A',
boxprops={'facecolor': 'steelblue'})
ax.boxplot(data_B, positions=pos + 0.2, patch_artist=True, label='Box B',
boxprops={'facecolor': 'lightblue'})
ax.legend()
Percent sign in pie labels auto-escaped with ``usetex=True``
------------------------------------------------------------
It is common, with `.Axes.pie`, to specify labels that include a percent sign (``%``),
which denotes a comment for LaTeX. When enabling LaTeX with :rc:`text.usetex` or passing
``textprops={"usetex": True}``, this used to cause the percent sign to disappear.
Now, the percent sign is automatically escaped (by adding a preceding backslash) so that
it appears regardless of the ``usetex`` setting. If you have pre-escaped the percent
sign, this will be detected, and remain as is.
``hatch`` parameter for stackplot
---------------------------------
The `~.Axes.stackplot` *hatch* parameter now accepts a list of strings describing
hatching styles that will be applied sequentially to the layers in the stack:
.. plot::
:include-source:
:alt: Two charts, identified as ax1 and ax2, showing "stackplots", i.e. one-dimensional distributions of data stacked on top of one another. The first plot, ax1 has cross-hatching on all slices, having been given a single string as the "hatch" argument. The second plot, ax2 has different styles of hatching on each slice - diagonal hatching in opposite directions on the first two slices, cross-hatching on the third slice, and open circles on the fourth.
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10,5))
cols = 10
rows = 4
data = (
np.reshape(np.arange(0, cols, 1), (1, -1)) ** 2
+ np.reshape(np.arange(0, rows), (-1, 1))
+ np.random.random((rows, cols))*5
)
x = range(data.shape[1])
ax1.stackplot(x, data, hatch="x")
ax2.stackplot(x, data, hatch=["//","\\","x","o"])
ax1.set_title("hatch='x'")
ax2.set_title("hatch=['//','\\\\','x','o']")
plt.show()
Add option to plot only one half of violin plot
-----------------------------------------------
Setting the parameter *side* to 'low' or 'high' allows to only plot one half of the
`.Axes.violinplot`.
.. plot::
:include-source:
:alt: Three copies of a vertical violin plot; first in blue showing the default of both sides, followed by an orange copy that only shows the "low" (or left, in this case) side, and finally a green copy that only shows the "high" (or right) side.
# Fake data with reproducible random state.
np.random.seed(19680801)
data = np.random.normal(0, 8, size=100)
fig, ax = plt.subplots()
ax.violinplot(data, [0], showmeans=True, showextrema=True)
ax.violinplot(data, [1], showmeans=True, showextrema=True, side='low')
ax.violinplot(data, [2], showmeans=True, showextrema=True, side='high')
ax.set_title('Violin Sides Example')
ax.set_xticks([0, 1, 2], ['Default', 'side="low"', 'side="high"'])
ax.set_yticklabels([])
``axhline`` and ``axhspan`` on polar axes
-----------------------------------------
... now draw circles and circular arcs (`~.Axes.axhline`) or annuli and wedges
(`~.Axes.axhspan`).
.. plot::
:include-source:
:alt: A sample polar plot, that contains an axhline at radius 1, an axhspan annulus between radius 0.8 and 0.9, and an axhspan wedge between radius 0.6 and 0.7 and 288° and 324°.
fig = plt.figure()
ax = fig.add_subplot(projection="polar")
ax.set_rlim(0, 1.2)
ax.axhline(1, c="C0", alpha=.5)
ax.axhspan(.8, .9, fc="C1", alpha=.5)
ax.axhspan(.6, .7, .8, .9, fc="C2", alpha=.5)
Subplot titles can now be automatically aligned
-----------------------------------------------
Subplot axes titles can be misaligned vertically if tick labels or xlabels are placed at
the top of one subplot. The new `~.Figure.align_titles` method on the `.Figure` class
will now align the titles vertically.
.. plot::
:include-source:
:alt: A figure with two Axes side-by-side, the second of which with ticks on top. The Axes titles and x-labels appear unaligned with each other due to these ticks.
fig, axs = plt.subplots(1, 2, layout='constrained')
axs[0].plot(np.arange(0, 1e6, 1000))
axs[0].set_title('Title 0')
axs[0].set_xlabel('XLabel 0')
axs[1].plot(np.arange(1, 0, -0.1) * 2000, np.arange(1, 0, -0.1))
axs[1].set_title('Title 1')
axs[1].set_xlabel('XLabel 1')
axs[1].xaxis.tick_top()
axs[1].tick_params(axis='x', rotation=55)
.. plot::
:include-source:
:alt: A figure with two Axes side-by-side, the second of which with ticks on top. Unlike the previous figure, the Axes titles and x-labels appear aligned.
fig, axs = plt.subplots(1, 2, layout='constrained')
axs[0].plot(np.arange(0, 1e6, 1000))
axs[0].set_title('Title 0')
axs[0].set_xlabel('XLabel 0')
axs[1].plot(np.arange(1, 0, -0.1) * 2000, np.arange(1, 0, -0.1))
axs[1].set_title('Title 1')
axs[1].set_xlabel('XLabel 1')
axs[1].xaxis.tick_top()
axs[1].tick_params(axis='x', rotation=55)
fig.align_labels()
fig.align_titles()
``axisartist`` can now be used together with standard ``Formatters``
--------------------------------------------------------------------
... instead of being limited to axisartist-specific ones.
Toggle minorticks on Axis
-------------------------
Minor ticks on an `~matplotlib.axis.Axis` can be displayed or removed using
`~matplotlib.axis.Axis.minorticks_on` and `~matplotlib.axis.Axis.minorticks_off`; e.g.,
``ax.xaxis.minorticks_on()``. See also `~matplotlib.axes.Axes.minorticks_on`.
``StrMethodFormatter`` now respects ``axes.unicode_minus``
----------------------------------------------------------
When formatting negative values, `.StrMethodFormatter` will now use unicode minus signs
if :rc:`axes.unicode_minus` is set.
>>> from matplotlib.ticker import StrMethodFormatter
>>> with plt.rc_context({'axes.unicode_minus': False}):
... formatter = StrMethodFormatter('{x}')
... print(formatter.format_data(-10))
-10
>>> with plt.rc_context({'axes.unicode_minus': True}):
... formatter = StrMethodFormatter('{x}')
... print(formatter.format_data(-10))
−10
Figure, Axes, and Legend Layout
===============================
Subfigures now have controllable zorders
----------------------------------------
Previously, setting the zorder of a subfigure had no effect, and those were plotted on
top of any figure-level artists (i.e for example on top of fig-level legends). Now,
subfigures behave like any other artists, and their zorder can be controlled, with
default a zorder of 0.
.. plot::
:include-source:
:alt: Example on controlling the zorder of a subfigure
x = np.linspace(1, 10, 10)
y1, y2 = x, -x
fig = plt.figure(constrained_layout=True)
subfigs = fig.subfigures(nrows=1, ncols=2)
for subfig in subfigs:
axarr = subfig.subplots(2, 1)
for ax in axarr.flatten():
(l1,) = ax.plot(x, y1, label="line1")
(l2,) = ax.plot(x, y2, label="line2")
subfigs[0].set_zorder(6)
l = fig.legend(handles=[l1, l2], loc="upper center", ncol=2)
Getters for xmargin, ymargin and zmargin
----------------------------------------
`.Axes.get_xmargin`, `.Axes.get_ymargin` and `.Axes3D.get_zmargin` methods have been
added to return the margin values set by `.Axes.set_xmargin`, `.Axes.set_ymargin` and
`.Axes3D.set_zmargin`, respectively.
Mathtext improvements
=====================
``mathtext`` documentation improvements
---------------------------------------
The documentation is updated to take information directly from the parser. This means
that (almost) all supported symbols, operators, etc. are shown at :ref:`mathtext`.
``mathtext`` spacing corrections
--------------------------------
As consequence of the updated documentation, the spacing on a number of relational and
operator symbols were correctly classified and therefore will be spaced properly.
Widget Improvements
===================
Check and Radio Button widgets support clearing
-----------------------------------------------
The `.CheckButtons` and `.RadioButtons` widgets now support clearing their state by
calling their ``.clear`` method. Note that it is not possible to have no selected radio
buttons, so the selected option at construction time is selected.
3D plotting improvements
========================
Setting 3D axis limits now set the limits exactly
-------------------------------------------------
Previously, setting the limits of a 3D axis would always add a small margin to the
limits. Limits are now set exactly by default. The newly introduced rcparam
``axes3d.automargin`` can be used to revert to the old behavior where margin is
automatically added.
.. plot::
:include-source:
:alt: Example of the new behavior of 3D axis limits, and how setting the rcParam reverts to the old behavior.
fig, axs = plt.subplots(1, 2, subplot_kw={'projection': '3d'})
plt.rcParams['axes3d.automargin'] = True
axs[0].set(xlim=(0, 1), ylim=(0, 1), zlim=(0, 1), title='Old Behavior')
plt.rcParams['axes3d.automargin'] = False # the default in 3.9.0
axs[1].set(xlim=(0, 1), ylim=(0, 1), zlim=(0, 1), title='New Behavior')
Other improvements
==================
BackendRegistry
---------------
New :class:`~matplotlib.backends.registry.BackendRegistry` class is the single source of
truth for available backends. The singleton instance is
``matplotlib.backends.backend_registry``. It is used internally by Matplotlib, and also
IPython (and therefore Jupyter) starting with IPython 8.24.0.
There are three sources of backends: built-in (source code is within the Matplotlib
repository), explicit ``module://some.backend`` syntax (backend is obtained by loading
the module), or via an entry point (self-registering backend in an external package).
To obtain a list of all registered backends use:
>>> from matplotlib.backends import backend_registry
>>> backend_registry.list_all()
Add ``widths``, ``heights`` and ``angles`` setter to ``EllipseCollection``
--------------------------------------------------------------------------
The ``widths``, ``heights`` and ``angles`` values of the
`~matplotlib.collections.EllipseCollection` can now be changed after the collection has
been created.
.. plot::
:include-source:
from matplotlib.collections import EllipseCollection
rng = np.random.default_rng(0)
widths = (2, )
heights = (3, )
angles = (45, )
offsets = rng.random((10, 2)) * 10
fig, ax = plt.subplots()
ec = EllipseCollection(
widths=widths,
heights=heights,
angles=angles,
offsets=offsets,
units='x',
offset_transform=ax.transData,
)
ax.add_collection(ec)
ax.set_xlim(-2, 12)
ax.set_ylim(-2, 12)
new_widths = rng.random((10, 2)) * 2
new_heights = rng.random((10, 2)) * 3
new_angles = rng.random((10, 2)) * 180
ec.set(widths=new_widths, heights=new_heights, angles=new_angles)
``image.interpolation_stage`` rcParam
-------------------------------------
This new rcParam controls whether image interpolation occurs in "data" space or in
"rgba" space.
Arrow patch position is now modifiable
--------------------------------------
A setter method has been added that allows updating the position of the `.patches.Arrow`
object without requiring a full re-draw.
.. plot::
:include-source:
:alt: Example of changing the position of the arrow with the new ``set_data`` method.
from matplotlib import animation
from matplotlib.patches import Arrow
fig, ax = plt.subplots()
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
a = Arrow(2, 0, 0, 10)
ax.add_patch(a)
# code for modifying the arrow
def update(i):
a.set_data(x=.5, dx=i, dy=6, width=2)
ani = animation.FuncAnimation(fig, update, frames=15, interval=90, blit=False)
plt.show()
NonUniformImage now has mouseover support
-----------------------------------------
When mousing over a `~matplotlib.image.NonUniformImage`, the data values are now
displayed.
|