1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
//----------------------------------------------------------------------------
// AGG Contribution Pack - Gradients 1 (AGG CP - Gradients 1)
// http://milan.marusinec.sk/aggcp
//
// For Anti-Grain Geometry - Version 2.4
// http://www.antigrain.org
//
// Contribution Created By:
// Milan Marusinec alias Milano
// milan@marusinec.sk
// Copyright (c) 2007-2008
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// [History] -----------------------------------------------------------------
//
// 02.02.2008-Milano: Ported from Object Pascal code of AggPas
//
#ifndef AGG_SPAN_GRADIENT_CONTOUR_INCLUDED
#define AGG_SPAN_GRADIENT_CONTOUR_INCLUDED
#include "agg_basics.h"
#include "agg_trans_affine.h"
#include "agg_path_storage.h"
#include "agg_pixfmt_gray.h"
#include "agg_conv_transform.h"
#include "agg_conv_curve.h"
#include "agg_bounding_rect.h"
#include "agg_renderer_base.h"
#include "agg_renderer_primitives.h"
#include "agg_rasterizer_outline.h"
#include "agg_span_gradient.h"
#define infinity 1E20
namespace agg
{
//==========================================================gradient_contour
class gradient_contour
{
private:
int8u* m_buffer;
int m_width;
int m_height;
int m_frame;
double m_d1;
double m_d2;
public:
gradient_contour() :
m_buffer(NULL),
m_width(0),
m_height(0),
m_frame(10),
m_d1(0),
m_d2(100)
{
}
gradient_contour(double d1, double d2) :
m_buffer(NULL),
m_width(0),
m_height(0),
m_frame(10),
m_d1(d1),
m_d2(d2)
{
}
~gradient_contour()
{
if (m_buffer)
{
delete [] m_buffer;
}
}
int8u* contour_create(path_storage* ps );
int contour_width() { return m_width; }
int contour_height() { return m_height; }
void d1(double d ) { m_d1 = d; }
void d2(double d ) { m_d2 = d; }
void frame(int f ) { m_frame = f; }
int frame() { return m_frame; }
int calculate(int x, int y, int d) const
{
if (m_buffer)
{
int px = x >> agg::gradient_subpixel_shift;
int py = y >> agg::gradient_subpixel_shift;
px %= m_width;
if (px < 0)
{
px += m_width;
}
py %= m_height;
if (py < 0 )
{
py += m_height;
}
return iround(m_buffer[py * m_width + px ] * (m_d2 / 256 ) + m_d1 ) << gradient_subpixel_shift;
}
else
{
return 0;
}
}
};
static AGG_INLINE int square(int x ) { return x * x; }
// DT algorithm by: Pedro Felzenszwalb
void dt(float* spanf, float* spang, float* spanr, int* spann ,int length )
{
int k = 0;
float s;
spann[0 ] = 0;
spang[0 ] = float(-infinity );
spang[1 ] = float(+infinity );
for (int q = 1; q <= length - 1; q++)
{
s = ((spanf[q ] + square(q ) ) - (spanf[spann[k ] ] + square(spann[k ] ) ) ) / (2 * q - 2 * spann[k ] );
while (s <= spang[k ])
{
k--;
s = ((spanf[q ] + square(q ) ) - (spanf[spann[k ] ] + square(spann[k ] ) ) ) / (2 * q - 2 * spann[k ] );
}
k++;
spann[k ] = q;
spang[k ] = s;
spang[k + 1 ] = float(+infinity);
}
k = 0;
for (int q = 0; q <= length - 1; q++)
{
while (spang[k + 1 ] < q )
{
k++;
}
spanr[q ] = square(q - spann[k ] ) + spanf[spann[k ] ];
}
}
// DT algorithm by: Pedro Felzenszwalb
int8u* gradient_contour::contour_create(path_storage* ps )
{
int8u* result = NULL;
if (ps)
{
// I. Render Black And White NonAA Stroke of the Path
// Path Bounding Box + Some Frame Space Around [configurable]
agg::conv_curve<agg::path_storage> conv(*ps);
double x1, y1, x2, y2;
if (agg::bounding_rect_single(conv ,0 ,&x1 ,&y1 ,&x2 ,&y2 ))
{
// Create BW Rendering Surface
int width = int(ceil(x2 - x1 ) ) + m_frame * 2 + 1;
int height = int(ceil(y2 - y1 ) ) + m_frame * 2 + 1;
int8u* buffer = new int8u[width * height];
if (buffer)
{
memset(buffer ,255 ,width * height );
// Setup VG Engine & Render
agg::rendering_buffer rb;
rb.attach(buffer ,width ,height ,width );
agg::pixfmt_gray8 pf(rb);
agg::renderer_base<agg::pixfmt_gray8> renb(pf );
agg::renderer_primitives<agg::renderer_base<agg::pixfmt_gray8> > prim(renb );
agg::rasterizer_outline<renderer_primitives<agg::renderer_base<agg::pixfmt_gray8> > > ras(prim );
agg::trans_affine mtx;
mtx *= agg::trans_affine_translation(-x1 + m_frame, -y1 + m_frame );
agg::conv_transform<agg::conv_curve<agg::path_storage> > trans(conv ,mtx );
prim.line_color(agg::rgba8(0 ,0 ,0 ,255 ) );
ras.add_path(trans );
// II. Distance Transform
// Create Float Buffer + 0 vs. infinity (1e20) assignment
float* image = new float[width * height];
if (image)
{
for (int y = 0, l = 0; y < height; y++ )
{
for (int x = 0; x < width; x++, l++ )
{
if (buffer[l ] == 0)
{
image[l ] = 0.0;
}
else
{
image[l ] = float(infinity );
}
}
}
// DT of 2d
// SubBuff<float> max width,height
int length = width;
if (height > length)
{
length = height;
}
float* spanf = new float[length];
float* spang = new float[length + 1];
float* spanr = new float[length];
int* spann = new int[length];
if ((spanf) && (spang) && (spanr) && (spann))
{
// Transform along columns
for (int x = 0; x < width; x++ )
{
for (int y = 0; y < height; y++ )
{
spanf[y] = image[y * width + x];
}
// DT of 1d
dt(spanf ,spang ,spanr ,spann ,height );
for (int y = 0; y < height; y++ )
{
image[y * width + x] = spanr[y];
}
}
// Transform along rows
for (int y = 0; y < height; y++ )
{
for (int x = 0; x < width; x++ )
{
spanf[x] = image[y * width + x];
}
// DT of 1d
dt(spanf ,spang ,spanr ,spann ,width );
for (int x = 0; x < width; x++ )
{
image[y * width + x] = spanr[x];
}
}
// Take Square Roots, Min & Max
float min = sqrt(image[0] );
float max = min;
for (int y = 0, l = 0; y < height; y++ )
{
for (int x = 0; x < width; x++, l++ )
{
image[l] = sqrt(image[l]);
if (min > image[l])
{
min = image[l];
}
if (max < image[l])
{
max = image[l];
}
}
}
// III. Convert To Grayscale
if (min == max)
{
memset(buffer ,0 ,width * height );
}
else
{
float scale = 255 / (max - min );
for (int y = 0, l = 0; y < height; y++ )
{
for (int x = 0; x < width; x++ ,l++ )
{
buffer[l] = int8u(int((image[l] - min ) * scale ));
}
}
}
// OK
if (m_buffer)
{
delete [] m_buffer;
}
m_buffer = buffer;
m_width = width;
m_height = height;
buffer = NULL;
result = m_buffer;
}
if (spanf) { delete [] spanf; }
if (spang) { delete [] spang; }
if (spanr) { delete [] spanr; }
if (spann) { delete [] spann; }
delete [] image;
}
}
if (buffer)
{
delete [] buffer;
}
}
}
return result;
}
}
#endif
|