File: demo_parasite_axes.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 78,340 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 92; sh: 53
file content (53 lines) | stat: -rw-r--r-- 1,682 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
==================
Parasite Axes demo
==================

Create a parasite Axes. Such Axes would share the x scale with a host Axes,
but show a different scale in y direction.

This approach uses `mpl_toolkits.axes_grid1.parasite_axes.HostAxes` and
`mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxes`.

The standard and recommended approach is to use instead standard Matplotlib
axes, as shown in the :doc:`/gallery/spines/multiple_yaxis_with_spines`
example.

An alternative approach using `mpl_toolkits.axes_grid1` and
`mpl_toolkits.axisartist` is shown in the
:doc:`/gallery/axisartist/demo_parasite_axes2` example.
"""

import matplotlib.pyplot as plt

from mpl_toolkits.axisartist.parasite_axes import HostAxes

fig = plt.figure()

host = fig.add_axes([0.15, 0.1, 0.65, 0.8], axes_class=HostAxes)
par1 = host.get_aux_axes(viewlim_mode=None, sharex=host)
par2 = host.get_aux_axes(viewlim_mode=None, sharex=host)

host.axis["right"].set_visible(False)

par1.axis["right"].set_visible(True)
par1.axis["right"].major_ticklabels.set_visible(True)
par1.axis["right"].label.set_visible(True)

par2.axis["right2"] = par2.new_fixed_axis(loc="right", offset=(60, 0))

p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature")
p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity")

host.set(xlim=(0, 2), ylim=(0, 2), xlabel="Distance", ylabel="Density")
par1.set(ylim=(0, 4), ylabel="Temperature")
par2.set(ylim=(1, 65), ylabel="Velocity")

host.legend()

host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
par2.axis["right2"].label.set_color(p3.get_color())

plt.show()