1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
"""
==================================
``fill_between`` with transparency
==================================
The `~matplotlib.axes.Axes.fill_between` function generates a shaded
region between a min and max boundary that is useful for illustrating ranges.
It has a very handy ``where`` argument to combine filling with logical ranges,
e.g., to just fill in a curve over some threshold value.
At its most basic level, ``fill_between`` can be used to enhance a graph's
visual appearance. Let's compare two graphs of financial data with a simple
line plot on the left and a filled line on the right.
"""
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.cbook as cbook
# load up some sample financial data
r = cbook.get_sample_data('goog.npz')['price_data']
# create two subplots with the shared x and y axes
fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True, sharey=True)
pricemin = r["close"].min()
ax1.plot(r["date"], r["close"], lw=2)
ax2.fill_between(r["date"], pricemin, r["close"], alpha=0.7)
for ax in ax1, ax2:
ax.grid(True)
ax.label_outer()
ax1.set_ylabel('price')
fig.suptitle('Google (GOOG) daily closing price')
fig.autofmt_xdate()
# %%
# The alpha channel is not necessary here, but it can be used to soften
# colors for more visually appealing plots. In other examples, as we'll
# see below, the alpha channel is functionally useful as the shaded
# regions can overlap and alpha allows you to see both. Note that the
# postscript format does not support alpha (this is a postscript
# limitation, not a matplotlib limitation), so when using alpha save
# your figures in PNG, PDF or SVG.
#
# Our next example computes two populations of random walkers with a
# different mean and standard deviation of the normal distributions from
# which the steps are drawn. We use filled regions to plot +/- one
# standard deviation of the mean position of the population. Here the
# alpha channel is useful, not just aesthetic.
# Fixing random state for reproducibility
np.random.seed(19680801)
Nsteps, Nwalkers = 100, 250
t = np.arange(Nsteps)
# an (Nsteps x Nwalkers) array of random walk steps
S1 = 0.004 + 0.02*np.random.randn(Nsteps, Nwalkers)
S2 = 0.002 + 0.01*np.random.randn(Nsteps, Nwalkers)
# an (Nsteps x Nwalkers) array of random walker positions
X1 = S1.cumsum(axis=0)
X2 = S2.cumsum(axis=0)
# Nsteps length arrays empirical means and standard deviations of both
# populations over time
mu1 = X1.mean(axis=1)
sigma1 = X1.std(axis=1)
mu2 = X2.mean(axis=1)
sigma2 = X2.std(axis=1)
# plot it!
fig, ax = plt.subplots(1)
ax.plot(t, mu1, lw=2, label='mean population 1')
ax.plot(t, mu2, lw=2, label='mean population 2')
ax.fill_between(t, mu1+sigma1, mu1-sigma1, facecolor='C0', alpha=0.4)
ax.fill_between(t, mu2+sigma2, mu2-sigma2, facecolor='C1', alpha=0.4)
ax.set_title(r'random walkers empirical $\mu$ and $\pm \sigma$ interval')
ax.legend(loc='upper left')
ax.set_xlabel('num steps')
ax.set_ylabel('position')
ax.grid()
# %%
# The ``where`` keyword argument is very handy for highlighting certain
# regions of the graph. ``where`` takes a boolean mask the same length
# as the x, ymin and ymax arguments, and only fills in the region where
# the boolean mask is True. In the example below, we simulate a single
# random walker and compute the analytic mean and standard deviation of
# the population positions. The population mean is shown as the dashed
# line, and the plus/minus one sigma deviation from the mean is shown
# as the filled region. We use the where mask ``X > upper_bound`` to
# find the region where the walker is outside the one sigma boundary,
# and shade that region red.
# Fixing random state for reproducibility
np.random.seed(1)
Nsteps = 500
t = np.arange(Nsteps)
mu = 0.002
sigma = 0.01
# the steps and position
S = mu + sigma*np.random.randn(Nsteps)
X = S.cumsum()
# the 1 sigma upper and lower analytic population bounds
lower_bound = mu*t - sigma*np.sqrt(t)
upper_bound = mu*t + sigma*np.sqrt(t)
fig, ax = plt.subplots(1)
ax.plot(t, X, lw=2, label='walker position')
ax.plot(t, mu*t, lw=1, label='population mean', color='C0', ls='--')
ax.fill_between(t, lower_bound, upper_bound, facecolor='C0', alpha=0.4,
label='1 sigma range')
ax.legend(loc='upper left')
# here we use the where argument to only fill the region where the
# walker is above the population 1 sigma boundary
ax.fill_between(t, upper_bound, X, where=X > upper_bound, fc='red', alpha=0.4)
ax.fill_between(t, lower_bound, X, where=X < lower_bound, fc='red', alpha=0.4)
ax.set_xlabel('num steps')
ax.set_ylabel('position')
ax.grid()
# %%
# Another handy use of filled regions is to highlight horizontal or vertical
# spans of an Axes -- for that Matplotlib has the helper functions
# `~matplotlib.axes.Axes.axhspan` and `~matplotlib.axes.Axes.axvspan`. See
# :doc:`/gallery/subplots_axes_and_figures/axhspan_demo`.
plt.show()
# %%
# .. tags::
#
# styling: alpha
# plot-type: fill_between
# level: intermediate
# purpose: showcase
|