File: hist.py

package info (click to toggle)
matplotlib 3.10.1%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 78,340 kB
  • sloc: python: 147,118; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 786; makefile: 92; sh: 53
file content (122 lines) | stat: -rw-r--r-- 3,421 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
==========
Histograms
==========

How to plot histograms with Matplotlib.
"""

import matplotlib.pyplot as plt
import numpy as np

from matplotlib import colors
from matplotlib.ticker import PercentFormatter

# Create a random number generator with a fixed seed for reproducibility
rng = np.random.default_rng(19680801)

# %%
# Generate data and plot a simple histogram
# -----------------------------------------
#
# To generate a 1D histogram we only need a single vector of numbers. For a 2D
# histogram we'll need a second vector. We'll generate both below, and show
# the histogram for each vector.

N_points = 100000
n_bins = 20

# Generate two normal distributions
dist1 = rng.standard_normal(N_points)
dist2 = 0.4 * rng.standard_normal(N_points) + 5

fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True)

# We can set the number of bins with the *bins* keyword argument.
axs[0].hist(dist1, bins=n_bins)
axs[1].hist(dist2, bins=n_bins)

plt.show()


# %%
# Updating histogram colors
# -------------------------
#
# The histogram method returns (among other things) a ``patches`` object. This
# gives us access to the properties of the objects drawn. Using this, we can
# edit the histogram to our liking. Let's change the color of each bar
# based on its y value.

fig, axs = plt.subplots(1, 2, tight_layout=True)

# N is the count in each bin, bins is the lower-limit of the bin
N, bins, patches = axs[0].hist(dist1, bins=n_bins)

# We'll color code by height, but you could use any scalar
fracs = N / N.max()

# we need to normalize the data to 0..1 for the full range of the colormap
norm = colors.Normalize(fracs.min(), fracs.max())

# Now, we'll loop through our objects and set the color of each accordingly
for thisfrac, thispatch in zip(fracs, patches):
    color = plt.cm.viridis(norm(thisfrac))
    thispatch.set_facecolor(color)

# We can also normalize our inputs by the total number of counts
axs[1].hist(dist1, bins=n_bins, density=True)

# Now we format the y-axis to display percentage
axs[1].yaxis.set_major_formatter(PercentFormatter(xmax=1))


# %%
# Plot a 2D histogram
# -------------------
#
# To plot a 2D histogram, one only needs two vectors of the same length,
# corresponding to each axis of the histogram.

fig, ax = plt.subplots(tight_layout=True)
hist = ax.hist2d(dist1, dist2)


# %%
# Customizing your histogram
# --------------------------
#
# Customizing a 2D histogram is similar to the 1D case, you can control
# visual components such as the bin size or color normalization.

fig, axs = plt.subplots(3, 1, figsize=(5, 15), sharex=True, sharey=True,
                        tight_layout=True)

# We can increase the number of bins on each axis
axs[0].hist2d(dist1, dist2, bins=40)

# As well as define normalization of the colors
axs[1].hist2d(dist1, dist2, bins=40, norm=colors.LogNorm())

# We can also define custom numbers of bins for each axis
axs[2].hist2d(dist1, dist2, bins=(80, 10), norm=colors.LogNorm())

# %%
#
# .. tags::
#
#    plot-type: histogram,
#    plot-type: histogram2d
#    domain: statistics
#    styling: color,
#    component: normalization
#    component: patch
#
# .. admonition:: References
#
#    The use of the following functions, methods, classes and modules is shown
#    in this example:
#
#    - `matplotlib.axes.Axes.hist` / `matplotlib.pyplot.hist`
#    - `matplotlib.pyplot.hist2d`
#    - `matplotlib.ticker.PercentFormatter`