1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
"""
===============================================
Create multiple subplots using ``plt.subplots``
===============================================
`.pyplot.subplots` creates a figure and a grid of subplots with a single call,
while providing reasonable control over how the individual plots are created.
For more advanced use cases you can use `.GridSpec` for a more general subplot
layout or `.Figure.add_subplot` for adding subplots at arbitrary locations
within the figure.
"""
# sphinx_gallery_thumbnail_number = 11
import matplotlib.pyplot as plt
import numpy as np
# Some example data to display
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)
# %%
# A figure with just one subplot
# """"""""""""""""""""""""""""""
#
# ``subplots()`` without arguments returns a `.Figure` and a single
# `~.axes.Axes`.
#
# This is actually the simplest and recommended way of creating a single
# Figure and Axes.
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('A single plot')
# %%
# Stacking subplots in one direction
# """"""""""""""""""""""""""""""""""
#
# The first two optional arguments of `.pyplot.subplots` define the number of
# rows and columns of the subplot grid.
#
# When stacking in one direction only, the returned ``axs`` is a 1D numpy array
# containing the list of created Axes.
fig, axs = plt.subplots(2)
fig.suptitle('Vertically stacked subplots')
axs[0].plot(x, y)
axs[1].plot(x, -y)
# %%
# If you are creating just a few Axes, it's handy to unpack them immediately to
# dedicated variables for each Axes. That way, we can use ``ax1`` instead of
# the more verbose ``axs[0]``.
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle('Vertically stacked subplots')
ax1.plot(x, y)
ax2.plot(x, -y)
# %%
# To obtain side-by-side subplots, pass parameters ``1, 2`` for one row and two
# columns.
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.suptitle('Horizontally stacked subplots')
ax1.plot(x, y)
ax2.plot(x, -y)
# %%
# Stacking subplots in two directions
# """""""""""""""""""""""""""""""""""
#
# When stacking in two directions, the returned ``axs`` is a 2D NumPy array.
#
# If you have to set parameters for each subplot it's handy to iterate over
# all subplots in a 2D grid using ``for ax in axs.flat:``.
fig, axs = plt.subplots(2, 2)
axs[0, 0].plot(x, y)
axs[0, 0].set_title('Axis [0, 0]')
axs[0, 1].plot(x, y, 'tab:orange')
axs[0, 1].set_title('Axis [0, 1]')
axs[1, 0].plot(x, -y, 'tab:green')
axs[1, 0].set_title('Axis [1, 0]')
axs[1, 1].plot(x, -y, 'tab:red')
axs[1, 1].set_title('Axis [1, 1]')
for ax in axs.flat:
ax.set(xlabel='x-label', ylabel='y-label')
# Hide x labels and tick labels for top plots and y ticks for right plots.
for ax in axs.flat:
ax.label_outer()
# %%
# You can use tuple-unpacking also in 2D to assign all subplots to dedicated
# variables:
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
fig.suptitle('Sharing x per column, y per row')
ax1.plot(x, y)
ax2.plot(x, y**2, 'tab:orange')
ax3.plot(x, -y, 'tab:green')
ax4.plot(x, -y**2, 'tab:red')
for ax in fig.get_axes():
ax.label_outer()
# %%
# Sharing axes
# """"""""""""
#
# By default, each Axes is scaled individually. Thus, if the ranges are
# different the tick values of the subplots do not align.
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle('Axes values are scaled individually by default')
ax1.plot(x, y)
ax2.plot(x + 1, -y)
# %%
# You can use *sharex* or *sharey* to align the horizontal or vertical axis.
fig, (ax1, ax2) = plt.subplots(2, sharex=True)
fig.suptitle('Aligning x-axis using sharex')
ax1.plot(x, y)
ax2.plot(x + 1, -y)
# %%
# Setting *sharex* or *sharey* to ``True`` enables global sharing across the
# whole grid, i.e. also the y-axes of vertically stacked subplots have the
# same scale when using ``sharey=True``.
fig, axs = plt.subplots(3, sharex=True, sharey=True)
fig.suptitle('Sharing both axes')
axs[0].plot(x, y ** 2)
axs[1].plot(x, 0.3 * y, 'o')
axs[2].plot(x, y, '+')
# %%
# For subplots that are sharing axes one set of tick labels is enough. Tick
# labels of inner Axes are automatically removed by *sharex* and *sharey*.
# Still there remains an unused empty space between the subplots.
#
# To precisely control the positioning of the subplots, one can explicitly
# create a `.GridSpec` with `.Figure.add_gridspec`, and then call its
# `~.GridSpecBase.subplots` method. For example, we can reduce the height
# between vertical subplots using ``add_gridspec(hspace=0)``.
#
# `.label_outer` is a handy method to remove labels and ticks from subplots
# that are not at the edge of the grid.
fig = plt.figure()
gs = fig.add_gridspec(3, hspace=0)
axs = gs.subplots(sharex=True, sharey=True)
fig.suptitle('Sharing both axes')
axs[0].plot(x, y ** 2)
axs[1].plot(x, 0.3 * y, 'o')
axs[2].plot(x, y, '+')
# Hide x labels and tick labels for all but bottom plot.
for ax in axs:
ax.label_outer()
# %%
# Apart from ``True`` and ``False``, both *sharex* and *sharey* accept the
# values 'row' and 'col' to share the values only per row or column.
fig = plt.figure()
gs = fig.add_gridspec(2, 2, hspace=0, wspace=0)
(ax1, ax2), (ax3, ax4) = gs.subplots(sharex='col', sharey='row')
fig.suptitle('Sharing x per column, y per row')
ax1.plot(x, y)
ax2.plot(x, y**2, 'tab:orange')
ax3.plot(x + 1, -y, 'tab:green')
ax4.plot(x + 2, -y**2, 'tab:red')
for ax in fig.get_axes():
ax.label_outer()
# %%
# If you want a more complex sharing structure, you can first create the
# grid of Axes with no sharing, and then call `.axes.Axes.sharex` or
# `.axes.Axes.sharey` to add sharing info a posteriori.
fig, axs = plt.subplots(2, 2)
axs[0, 0].plot(x, y)
axs[0, 0].set_title("main")
axs[1, 0].plot(x, y**2)
axs[1, 0].set_title("shares x with main")
axs[1, 0].sharex(axs[0, 0])
axs[0, 1].plot(x + 1, y + 1)
axs[0, 1].set_title("unrelated")
axs[1, 1].plot(x + 2, y + 2)
axs[1, 1].set_title("also unrelated")
fig.tight_layout()
# %%
# Polar Axes
# """"""""""
#
# The parameter *subplot_kw* of `.pyplot.subplots` controls the subplot
# properties (see also `.Figure.add_subplot`). In particular, this can be used
# to create a grid of polar Axes.
fig, (ax1, ax2) = plt.subplots(1, 2, subplot_kw=dict(projection='polar'))
ax1.plot(x, y)
ax2.plot(x, y ** 2)
plt.show()
# %%
# .. tags::
#
# component: subplot,
# component: axes,
# component: axis
# plot-type: line,
# plot-type: polar
# level: beginner
# purpose: showcase
|