1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
"""
===========================
Plots with different scales
===========================
Two plots on the same Axes with different left and right scales.
The trick is to use *two different Axes* that share the same *x* axis.
You can use separate `matplotlib.ticker` formatters and locators as
desired since the two Axes are independent.
Such Axes are generated by calling the `.Axes.twinx` method. Likewise,
`.Axes.twiny` is available to generate Axes that share a *y* axis but
have different top and bottom scales.
"""
import matplotlib.pyplot as plt
import numpy as np
# Create some mock data
t = np.arange(0.01, 10.0, 0.01)
data1 = np.exp(t)
data2 = np.sin(2 * np.pi * t)
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('time (s)')
ax1.set_ylabel('exp', color=color)
ax1.plot(t, data1, color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx() # instantiate a second Axes that shares the same x-axis
color = 'tab:blue'
ax2.set_ylabel('sin', color=color) # we already handled the x-label with ax1
ax2.plot(t, data2, color=color)
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
# %%
#
# .. admonition:: References
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
#
# - `matplotlib.axes.Axes.twinx` / `matplotlib.pyplot.twinx`
# - `matplotlib.axes.Axes.twiny` / `matplotlib.pyplot.twiny`
# - `matplotlib.axes.Axes.tick_params` / `matplotlib.pyplot.tick_params`
#
# .. tags::
#
# component: axes
# plot-type: line
# level: beginner
|