1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
"""
.. redirect-from:: /tutorials/intermediate/gridspec
.. redirect-from:: /tutorials/intermediate/arranging_axes
.. _arranging_axes:
===================================
Arranging multiple Axes in a Figure
===================================
Often more than one Axes is wanted on a figure at a time, usually
organized into a regular grid. Matplotlib has a variety of tools for
working with grids of Axes that have evolved over the history of the library.
Here we will discuss the tools we think users should use most often, the tools
that underpin how Axes are organized, and mention some of the older tools.
.. note::
Matplotlib uses *Axes* to refer to the drawing area that contains
data, x- and y-axis, ticks, labels, title, etc. See :ref:`figure_parts`
for more details. Another term that is often used is "subplot", which
refers to an Axes that is in a grid with other Axes objects.
Overview
========
Create grid-shaped combinations of Axes
---------------------------------------
`~matplotlib.pyplot.subplots`
The primary function used to create figures and a grid of Axes. It
creates and places all Axes on the figure at once, and returns an
object array with handles for the Axes in the grid. See
`.Figure.subplots`.
or
`~matplotlib.pyplot.subplot_mosaic`
A simple way to create figures and a grid of Axes, with the added
flexibility that Axes can also span rows or columns. The Axes are returned
in a labelled dictionary instead of an array. See also
`.Figure.subplot_mosaic` and
:ref:`mosaic`.
Sometimes it is natural to have more than one distinct group of Axes grids,
in which case Matplotlib has the concept of `.SubFigure`:
`~matplotlib.figure.SubFigure`
A virtual figure within a figure.
Underlying tools
----------------
Underlying these are the concept of a `~.gridspec.GridSpec` and
a `~.SubplotSpec`:
`~matplotlib.gridspec.GridSpec`
Specifies the geometry of the grid that a subplot will be
placed. The number of rows and number of columns of the grid
need to be set. Optionally, the subplot layout parameters
(e.g., left, right, etc.) can be tuned.
`~matplotlib.gridspec.SubplotSpec`
Specifies the location of the subplot in the given `.GridSpec`.
.. _fixed_size_axes:
Adding single Axes at a time
----------------------------
The above functions create all Axes in a single function call. It is also
possible to add Axes one at a time, and this was originally how Matplotlib
used to work. Doing so is generally less elegant and flexible, though
sometimes useful for interactive work or to place an Axes in a custom
location:
`~matplotlib.figure.Figure.add_axes`
Adds a single Axes at a location specified by
``[left, bottom, width, height]`` in fractions of figure width or height.
`~matplotlib.pyplot.subplot` or `.Figure.add_subplot`
Adds a single subplot on a figure, with 1-based indexing (inherited from
Matlab). Columns and rows can be spanned by specifying a range of grid
cells.
`~matplotlib.pyplot.subplot2grid`
Similar to `.pyplot.subplot`, but uses 0-based indexing and two-d python
slicing to choose cells.
"""
# %%
#
# As a simple example of manually adding an Axes *ax*, lets add a 3 inch x 2 inch
# Axes to a 4 inch x 3 inch figure. Note that the location of the subplot is
# defined as [left, bottom, width, height] in figure-normalized units:
# sphinx_gallery_thumbnail_number = 2
import matplotlib.pyplot as plt
import numpy as np
w, h = 4, 3
margin = 0.5
fig = plt.figure(figsize=(w, h), facecolor='lightblue')
ax = fig.add_axes([margin / w, margin / h, (w - 2 * margin) / w,
(h - 2 * margin) / h])
# %%
# High-level methods for making grids
# ===================================
#
# Basic 2x2 grid
# --------------
#
# We can create a basic 2-by-2 grid of Axes using
# `~matplotlib.pyplot.subplots`. It returns a `~matplotlib.figure.Figure`
# instance and an array of `~matplotlib.axes.Axes` objects. The Axes
# objects can be used to access methods to place artists on the Axes; here
# we use `~.Axes.annotate`, but other examples could be `~.Axes.plot`,
# `~.Axes.pcolormesh`, etc.
fig, axs = plt.subplots(ncols=2, nrows=2, figsize=(5.5, 3.5),
layout="constrained")
# add an artist, in this case a nice label in the middle...
for row in range(2):
for col in range(2):
axs[row, col].annotate(f'axs[{row}, {col}]', (0.5, 0.5),
transform=axs[row, col].transAxes,
ha='center', va='center', fontsize=18,
color='darkgrey')
fig.suptitle('plt.subplots()')
# %%
# We will annotate a lot of Axes, so let's encapsulate the annotation, rather
# than having that large piece of annotation code every time we need it:
def annotate_axes(ax, text, fontsize=18):
ax.text(0.5, 0.5, text, transform=ax.transAxes,
ha="center", va="center", fontsize=fontsize, color="darkgrey")
# %%
# The same effect can be achieved with `~.pyplot.subplot_mosaic`,
# but the return type is a dictionary instead of an array, where the user
# can give the keys useful meanings. Here we provide two lists, each list
# representing a row, and each element in the list a key representing the
# column.
fig, axd = plt.subplot_mosaic([['upper left', 'upper right'],
['lower left', 'lower right']],
figsize=(5.5, 3.5), layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]', fontsize=14)
fig.suptitle('plt.subplot_mosaic()')
# %%
#
# Grids of fixed-aspect ratio Axes
# --------------------------------
#
# Fixed-aspect ratio Axes are common for images or maps. However, they
# present a challenge to layout because two sets of constraints are being
# imposed on the size of the Axes - that they fit in the figure and that they
# have a set aspect ratio. This leads to large gaps between Axes by default:
#
fig, axs = plt.subplots(2, 2, layout="constrained",
figsize=(5.5, 3.5), facecolor='lightblue')
for ax in axs.flat:
ax.set_aspect(1)
fig.suptitle('Fixed aspect Axes')
# %%
# One way to address this is to change the aspect of the figure to be close
# to the aspect ratio of the Axes, however that requires trial and error.
# Matplotlib also supplies ``layout="compressed"``, which will work with
# simple grids to reduce the gaps between Axes. (The ``mpl_toolkits`` also
# provides `~.mpl_toolkits.axes_grid1.axes_grid.ImageGrid` to accomplish
# a similar effect, but with a non-standard Axes class).
fig, axs = plt.subplots(2, 2, layout="compressed", figsize=(5.5, 3.5),
facecolor='lightblue')
for ax in axs.flat:
ax.set_aspect(1)
fig.suptitle('Fixed aspect Axes: compressed')
# %%
# Axes spanning rows or columns in a grid
# ---------------------------------------
#
# Sometimes we want Axes to span rows or columns of the grid.
# There are actually multiple ways to accomplish this, but the most
# convenient is probably to use `~.pyplot.subplot_mosaic` by repeating one
# of the keys:
fig, axd = plt.subplot_mosaic([['upper left', 'right'],
['lower left', 'right']],
figsize=(5.5, 3.5), layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]', fontsize=14)
fig.suptitle('plt.subplot_mosaic()')
# %%
# See below for the description of how to do the same thing using
# `~matplotlib.gridspec.GridSpec` or `~matplotlib.pyplot.subplot2grid`.
#
# Variable widths or heights in a grid
# ------------------------------------
#
# Both `~.pyplot.subplots` and `~.pyplot.subplot_mosaic` allow the rows
# in the grid to be different heights, and the columns to be different
# widths using the *gridspec_kw* keyword argument.
# Spacing parameters accepted by `~matplotlib.gridspec.GridSpec`
# can be passed to `~matplotlib.pyplot.subplots` and
# `~matplotlib.pyplot.subplot_mosaic`:
gs_kw = dict(width_ratios=[1.4, 1], height_ratios=[1, 2])
fig, axd = plt.subplot_mosaic([['upper left', 'right'],
['lower left', 'right']],
gridspec_kw=gs_kw, figsize=(5.5, 3.5),
layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]', fontsize=14)
fig.suptitle('plt.subplot_mosaic()')
# %%
# .. _nested_axes_layouts:
#
# Nested Axes layouts
# -------------------
#
# Sometimes it is helpful to have two or more grids of Axes that
# may not need to be related to one another. The most simple way to
# accomplish this is to use `.Figure.subfigures`. Note that the subfigure
# layouts are independent, so the Axes spines in each subfigure are not
# necessarily aligned. See below for a more verbose way to achieve the same
# effect with `~.gridspec.GridSpecFromSubplotSpec`.
fig = plt.figure(layout="constrained")
subfigs = fig.subfigures(1, 2, wspace=0.07, width_ratios=[1.5, 1.])
axs0 = subfigs[0].subplots(2, 2)
subfigs[0].set_facecolor('lightblue')
subfigs[0].suptitle('subfigs[0]\nLeft side')
subfigs[0].supxlabel('xlabel for subfigs[0]')
axs1 = subfigs[1].subplots(3, 1)
subfigs[1].suptitle('subfigs[1]')
subfigs[1].supylabel('ylabel for subfigs[1]')
# %%
# It is also possible to nest Axes using `~.pyplot.subplot_mosaic` using
# nested lists. This method does not use subfigures, like above, so lacks
# the ability to add per-subfigure ``suptitle`` and ``supxlabel``, etc.
# Rather it is a convenience wrapper around the `~.SubplotSpec.subgridspec`
# method described below.
inner = [['innerA'],
['innerB']]
outer = [['upper left', inner],
['lower left', 'lower right']]
fig, axd = plt.subplot_mosaic(outer, layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]')
# %%
# Low-level and advanced grid methods
# ===================================
#
# Internally, the arrangement of a grid of Axes is controlled by creating
# instances of `~.GridSpec` and `~.SubplotSpec`. *GridSpec* defines a
# (possibly non-uniform) grid of cells. Indexing into the *GridSpec* returns
# a SubplotSpec that covers one or more grid cells, and can be used to
# specify the location of an Axes.
#
# The following examples show how to use low-level methods to arrange Axes
# using *GridSpec* objects.
#
# Basic 2x2 grid
# --------------
#
# We can accomplish a 2x2 grid in the same manner as
# ``plt.subplots(2, 2)``:
fig = plt.figure(figsize=(5.5, 3.5), layout="constrained")
spec = fig.add_gridspec(ncols=2, nrows=2)
ax0 = fig.add_subplot(spec[0, 0])
annotate_axes(ax0, 'ax0')
ax1 = fig.add_subplot(spec[0, 1])
annotate_axes(ax1, 'ax1')
ax2 = fig.add_subplot(spec[1, 0])
annotate_axes(ax2, 'ax2')
ax3 = fig.add_subplot(spec[1, 1])
annotate_axes(ax3, 'ax3')
fig.suptitle('Manually added subplots using add_gridspec')
# %%
# Axes spanning rows or grids in a grid
# -------------------------------------
#
# We can index the *spec* array using `NumPy slice syntax
# <https://numpy.org/doc/stable/user/basics.indexing.html>`_
# and the new Axes will span the slice. This would be the same
# as ``fig, axd = plt.subplot_mosaic([['ax0', 'ax0'], ['ax1', 'ax2']], ...)``:
fig = plt.figure(figsize=(5.5, 3.5), layout="constrained")
spec = fig.add_gridspec(2, 2)
ax0 = fig.add_subplot(spec[0, :])
annotate_axes(ax0, 'ax0')
ax10 = fig.add_subplot(spec[1, 0])
annotate_axes(ax10, 'ax10')
ax11 = fig.add_subplot(spec[1, 1])
annotate_axes(ax11, 'ax11')
fig.suptitle('Manually added subplots, spanning a column')
# %%
# Manual adjustments to a *GridSpec* layout
# -----------------------------------------
#
# When a *GridSpec* is explicitly used, you can adjust the layout
# parameters of subplots that are created from the *GridSpec*. Note this
# option is not compatible with *constrained layout* or
# `.Figure.tight_layout` which both ignore *left* and *right* and adjust
# subplot sizes to fill the figure. Usually such manual placement
# requires iterations to make the Axes tick labels not overlap the Axes.
#
# These spacing parameters can also be passed to `~.pyplot.subplots` and
# `~.pyplot.subplot_mosaic` as the *gridspec_kw* argument.
fig = plt.figure(layout=None, facecolor='lightblue')
gs = fig.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.75,
hspace=0.1, wspace=0.05)
ax0 = fig.add_subplot(gs[:-1, :])
annotate_axes(ax0, 'ax0')
ax1 = fig.add_subplot(gs[-1, :-1])
annotate_axes(ax1, 'ax1')
ax2 = fig.add_subplot(gs[-1, -1])
annotate_axes(ax2, 'ax2')
fig.suptitle('Manual gridspec with right=0.75')
# %%
# Nested layouts with SubplotSpec
# -------------------------------
#
# You can create nested layout similar to `~.Figure.subfigures` using
# `~.gridspec.SubplotSpec.subgridspec`. Here the Axes spines *are*
# aligned.
#
# Note this is also available from the more verbose
# `.gridspec.GridSpecFromSubplotSpec`.
fig = plt.figure(layout="constrained")
gs0 = fig.add_gridspec(1, 2)
gs00 = gs0[0].subgridspec(2, 2)
gs01 = gs0[1].subgridspec(3, 1)
for a in range(2):
for b in range(2):
ax = fig.add_subplot(gs00[a, b])
annotate_axes(ax, f'axLeft[{a}, {b}]', fontsize=10)
if a == 1 and b == 1:
ax.set_xlabel('xlabel')
for a in range(3):
ax = fig.add_subplot(gs01[a])
annotate_axes(ax, f'axRight[{a}, {b}]')
if a == 2:
ax.set_ylabel('ylabel')
fig.suptitle('nested gridspecs')
# %%
# Here's a more sophisticated example of nested *GridSpec*: We create an outer
# 4x4 grid with each cell containing an inner 3x3 grid of Axes. We outline
# the outer 4x4 grid by hiding appropriate spines in each of the inner 3x3
# grids.
def squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):
return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)
fig = plt.figure(figsize=(8, 8), layout='constrained')
outer_grid = fig.add_gridspec(4, 4, wspace=0, hspace=0)
for a in range(4):
for b in range(4):
# gridspec inside gridspec
inner_grid = outer_grid[a, b].subgridspec(3, 3, wspace=0, hspace=0)
axs = inner_grid.subplots() # Create all subplots for the inner grid.
for (c, d), ax in np.ndenumerate(axs):
ax.plot(*squiggle_xy(a + 1, b + 1, c + 1, d + 1))
ax.set(xticks=[], yticks=[])
# show only the outside spines
for ax in fig.get_axes():
ss = ax.get_subplotspec()
ax.spines.top.set_visible(ss.is_first_row())
ax.spines.bottom.set_visible(ss.is_last_row())
ax.spines.left.set_visible(ss.is_first_col())
ax.spines.right.set_visible(ss.is_last_col())
plt.show()
# %%
#
# More reading
# ============
#
# - More details about :ref:`subplot mosaic <mosaic>`.
# - More details about :ref:`constrained layout
# <constrainedlayout_guide>`, used to align
# spacing in most of these examples.
#
# .. admonition:: References
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
#
# - `matplotlib.pyplot.subplots`
# - `matplotlib.pyplot.subplot_mosaic`
# - `matplotlib.figure.Figure.add_gridspec`
# - `matplotlib.figure.Figure.add_subplot`
# - `matplotlib.gridspec.GridSpec`
# - `matplotlib.gridspec.SubplotSpec.subgridspec`
# - `matplotlib.gridspec.GridSpecFromSubplotSpec`
|