1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
"""
An experimental support for curvilinear grid.
"""
import functools
import numpy as np
import matplotlib as mpl
from matplotlib import _api
from matplotlib.path import Path
from matplotlib.transforms import Affine2D, IdentityTransform
from .axislines import (
_FixedAxisArtistHelperBase, _FloatingAxisArtistHelperBase, GridHelperBase)
from .axis_artist import AxisArtist
from .grid_finder import GridFinder
def _value_and_jacobian(func, xs, ys, xlims, ylims):
"""
Compute *func* and its derivatives along x and y at positions *xs*, *ys*,
while ensuring that finite difference calculations don't try to evaluate
values outside of *xlims*, *ylims*.
"""
eps = np.finfo(float).eps ** (1/2) # see e.g. scipy.optimize.approx_fprime
val = func(xs, ys)
# Take the finite difference step in the direction where the bound is the
# furthest; the step size is min of epsilon and distance to that bound.
xlo, xhi = sorted(xlims)
dxlo = xs - xlo
dxhi = xhi - xs
xeps = (np.take([-1, 1], dxhi >= dxlo)
* np.minimum(eps, np.maximum(dxlo, dxhi)))
val_dx = func(xs + xeps, ys)
ylo, yhi = sorted(ylims)
dylo = ys - ylo
dyhi = yhi - ys
yeps = (np.take([-1, 1], dyhi >= dylo)
* np.minimum(eps, np.maximum(dylo, dyhi)))
val_dy = func(xs, ys + yeps)
return (val, (val_dx - val) / xeps, (val_dy - val) / yeps)
class FixedAxisArtistHelper(_FixedAxisArtistHelperBase):
"""
Helper class for a fixed axis.
"""
def __init__(self, grid_helper, side, nth_coord_ticks=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
super().__init__(loc=side)
self.grid_helper = grid_helper
if nth_coord_ticks is None:
nth_coord_ticks = self.nth_coord
self.nth_coord_ticks = nth_coord_ticks
self.side = side
def update_lim(self, axes):
self.grid_helper.update_lim(axes)
def get_tick_transform(self, axes):
return axes.transData
def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label"""
v1, v2 = axes.get_ylim() if self.nth_coord == 0 else axes.get_xlim()
if v1 > v2: # Inverted limits.
side = {"left": "right", "right": "left",
"top": "bottom", "bottom": "top"}[self.side]
else:
side = self.side
angle_tangent = dict(left=90, right=90, bottom=0, top=0)[side]
def iter_major():
for nth_coord, show_labels in [
(self.nth_coord_ticks, True), (1 - self.nth_coord_ticks, False)]:
gi = self.grid_helper._grid_info[["lon", "lat"][nth_coord]]
for tick in gi["ticks"][side]:
yield (*tick["loc"], angle_tangent,
(tick["label"] if show_labels else ""))
return iter_major(), iter([])
class FloatingAxisArtistHelper(_FloatingAxisArtistHelperBase):
def __init__(self, grid_helper, nth_coord, value, axis_direction=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
super().__init__(nth_coord, value)
self.value = value
self.grid_helper = grid_helper
self._extremes = -np.inf, np.inf
self._line_num_points = 100 # number of points to create a line
def set_extremes(self, e1, e2):
if e1 is None:
e1 = -np.inf
if e2 is None:
e2 = np.inf
self._extremes = e1, e2
def update_lim(self, axes):
self.grid_helper.update_lim(axes)
x1, x2 = axes.get_xlim()
y1, y2 = axes.get_ylim()
grid_finder = self.grid_helper.grid_finder
extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
x1, y1, x2, y2)
lon_min, lon_max, lat_min, lat_max = extremes
e_min, e_max = self._extremes # ranges of other coordinates
if self.nth_coord == 0:
lat_min = max(e_min, lat_min)
lat_max = min(e_max, lat_max)
elif self.nth_coord == 1:
lon_min = max(e_min, lon_min)
lon_max = min(e_max, lon_max)
lon_levs, lon_n, lon_factor = \
grid_finder.grid_locator1(lon_min, lon_max)
lat_levs, lat_n, lat_factor = \
grid_finder.grid_locator2(lat_min, lat_max)
if self.nth_coord == 0:
xx0 = np.full(self._line_num_points, self.value)
yy0 = np.linspace(lat_min, lat_max, self._line_num_points)
xx, yy = grid_finder.transform_xy(xx0, yy0)
elif self.nth_coord == 1:
xx0 = np.linspace(lon_min, lon_max, self._line_num_points)
yy0 = np.full(self._line_num_points, self.value)
xx, yy = grid_finder.transform_xy(xx0, yy0)
self._grid_info = {
"extremes": (lon_min, lon_max, lat_min, lat_max),
"lon_info": (lon_levs, lon_n, np.asarray(lon_factor)),
"lat_info": (lat_levs, lat_n, np.asarray(lat_factor)),
"lon_labels": grid_finder._format_ticks(
1, "bottom", lon_factor, lon_levs),
"lat_labels": grid_finder._format_ticks(
2, "bottom", lat_factor, lat_levs),
"line_xy": (xx, yy),
}
def get_axislabel_transform(self, axes):
return Affine2D() # axes.transData
def get_axislabel_pos_angle(self, axes):
def trf_xy(x, y):
trf = self.grid_helper.grid_finder.get_transform() + axes.transData
return trf.transform([x, y]).T
xmin, xmax, ymin, ymax = self._grid_info["extremes"]
if self.nth_coord == 0:
xx0 = self.value
yy0 = (ymin + ymax) / 2
elif self.nth_coord == 1:
xx0 = (xmin + xmax) / 2
yy0 = self.value
xy1, dxy1_dx, dxy1_dy = _value_and_jacobian(
trf_xy, xx0, yy0, (xmin, xmax), (ymin, ymax))
p = axes.transAxes.inverted().transform(xy1)
if 0 <= p[0] <= 1 and 0 <= p[1] <= 1:
d = [dxy1_dy, dxy1_dx][self.nth_coord]
return xy1, np.rad2deg(np.arctan2(*d[::-1]))
else:
return None, None
def get_tick_transform(self, axes):
return IdentityTransform() # axes.transData
def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label, (optionally) tick_label"""
lat_levs, lat_n, lat_factor = self._grid_info["lat_info"]
yy0 = lat_levs / lat_factor
lon_levs, lon_n, lon_factor = self._grid_info["lon_info"]
xx0 = lon_levs / lon_factor
e0, e1 = self._extremes
def trf_xy(x, y):
trf = self.grid_helper.grid_finder.get_transform() + axes.transData
return trf.transform(np.column_stack(np.broadcast_arrays(x, y))).T
# find angles
if self.nth_coord == 0:
mask = (e0 <= yy0) & (yy0 <= e1)
(xx1, yy1), (dxx1, dyy1), (dxx2, dyy2) = _value_and_jacobian(
trf_xy, self.value, yy0[mask], (-np.inf, np.inf), (e0, e1))
labels = self._grid_info["lat_labels"]
elif self.nth_coord == 1:
mask = (e0 <= xx0) & (xx0 <= e1)
(xx1, yy1), (dxx2, dyy2), (dxx1, dyy1) = _value_and_jacobian(
trf_xy, xx0[mask], self.value, (-np.inf, np.inf), (e0, e1))
labels = self._grid_info["lon_labels"]
labels = [l for l, m in zip(labels, mask) if m]
angle_normal = np.arctan2(dyy1, dxx1)
angle_tangent = np.arctan2(dyy2, dxx2)
mm = (dyy1 == 0) & (dxx1 == 0) # points with degenerate normal
angle_normal[mm] = angle_tangent[mm] + np.pi / 2
tick_to_axes = self.get_tick_transform(axes) - axes.transAxes
in_01 = functools.partial(
mpl.transforms._interval_contains_close, (0, 1))
def iter_major():
for x, y, normal, tangent, lab \
in zip(xx1, yy1, angle_normal, angle_tangent, labels):
c2 = tick_to_axes.transform((x, y))
if in_01(c2[0]) and in_01(c2[1]):
yield [x, y], *np.rad2deg([normal, tangent]), lab
return iter_major(), iter([])
def get_line_transform(self, axes):
return axes.transData
def get_line(self, axes):
self.update_lim(axes)
x, y = self._grid_info["line_xy"]
return Path(np.column_stack([x, y]))
class GridHelperCurveLinear(GridHelperBase):
def __init__(self, aux_trans,
extreme_finder=None,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
"""
Parameters
----------
aux_trans : `.Transform` or tuple[Callable, Callable]
The transform from curved coordinates to rectilinear coordinate:
either a `.Transform` instance (which provides also its inverse),
or a pair of callables ``(trans, inv_trans)`` that define the
transform and its inverse. The callables should have signature::
x_rect, y_rect = trans(x_curved, y_curved)
x_curved, y_curved = inv_trans(x_rect, y_rect)
extreme_finder
grid_locator1, grid_locator2
Grid locators for each axis.
tick_formatter1, tick_formatter2
Tick formatters for each axis.
"""
super().__init__()
self._grid_info = None
self.grid_finder = GridFinder(aux_trans,
extreme_finder,
grid_locator1,
grid_locator2,
tick_formatter1,
tick_formatter2)
def update_grid_finder(self, aux_trans=None, **kwargs):
if aux_trans is not None:
self.grid_finder.update_transform(aux_trans)
self.grid_finder.update(**kwargs)
self._old_limits = None # Force revalidation.
@_api.make_keyword_only("3.9", "nth_coord")
def new_fixed_axis(
self, loc, nth_coord=None, axis_direction=None, offset=None, axes=None):
if axes is None:
axes = self.axes
if axis_direction is None:
axis_direction = loc
helper = FixedAxisArtistHelper(self, loc, nth_coord_ticks=nth_coord)
axisline = AxisArtist(axes, helper, axis_direction=axis_direction)
# Why is clip not set on axisline, unlike in new_floating_axis or in
# the floating_axig.GridHelperCurveLinear subclass?
return axisline
def new_floating_axis(self, nth_coord, value, axes=None, axis_direction="bottom"):
if axes is None:
axes = self.axes
helper = FloatingAxisArtistHelper(
self, nth_coord, value, axis_direction)
axisline = AxisArtist(axes, helper)
axisline.line.set_clip_on(True)
axisline.line.set_clip_box(axisline.axes.bbox)
# axisline.major_ticklabels.set_visible(True)
# axisline.minor_ticklabels.set_visible(False)
return axisline
def _update_grid(self, x1, y1, x2, y2):
self._grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2)
def get_gridlines(self, which="major", axis="both"):
grid_lines = []
if axis in ["both", "x"]:
for gl in self._grid_info["lon"]["lines"]:
grid_lines.extend(gl)
if axis in ["both", "y"]:
for gl in self._grid_info["lat"]["lines"]:
grid_lines.extend(gl)
return grid_lines
@_api.deprecated("3.9")
def get_tick_iterator(self, nth_coord, axis_side, minor=False):
angle_tangent = dict(left=90, right=90, bottom=0, top=0)[axis_side]
lon_or_lat = ["lon", "lat"][nth_coord]
if not minor: # major ticks
for tick in self._grid_info[lon_or_lat]["ticks"][axis_side]:
yield *tick["loc"], angle_tangent, tick["label"]
else:
for tick in self._grid_info[lon_or_lat]["ticks"][axis_side]:
yield *tick["loc"], angle_tangent, ""
|