1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
import numpy as np
from matplotlib import ticker as mticker, _api
from matplotlib.transforms import Bbox, Transform
def _find_line_box_crossings(xys, bbox):
"""
Find the points where a polyline crosses a bbox, and the crossing angles.
Parameters
----------
xys : (N, 2) array
The polyline coordinates.
bbox : `.Bbox`
The bounding box.
Returns
-------
list of ((float, float), float)
Four separate lists of crossings, for the left, right, bottom, and top
sides of the bbox, respectively. For each list, the entries are the
``((x, y), ccw_angle_in_degrees)`` of the crossing, where an angle of 0
means that the polyline is moving to the right at the crossing point.
The entries are computed by linearly interpolating at each crossing
between the nearest points on either side of the bbox edges.
"""
crossings = []
dxys = xys[1:] - xys[:-1]
for sl in [slice(None), slice(None, None, -1)]:
us, vs = xys.T[sl] # "this" coord, "other" coord
dus, dvs = dxys.T[sl]
umin, vmin = bbox.min[sl]
umax, vmax = bbox.max[sl]
for u0, inside in [(umin, us > umin), (umax, us < umax)]:
cross = []
idxs, = (inside[:-1] ^ inside[1:]).nonzero()
for idx in idxs:
v = vs[idx] + (u0 - us[idx]) * dvs[idx] / dus[idx]
if not vmin <= v <= vmax:
continue
crossing = (u0, v)[sl]
theta = np.degrees(np.arctan2(*dxys[idx][::-1]))
cross.append((crossing, theta))
crossings.append(cross)
return crossings
class ExtremeFinderSimple:
"""
A helper class to figure out the range of grid lines that need to be drawn.
"""
def __init__(self, nx, ny):
"""
Parameters
----------
nx, ny : int
The number of samples in each direction.
"""
self.nx = nx
self.ny = ny
def __call__(self, transform_xy, x1, y1, x2, y2):
"""
Compute an approximation of the bounding box obtained by applying
*transform_xy* to the box delimited by ``(x1, y1, x2, y2)``.
The intended use is to have ``(x1, y1, x2, y2)`` in axes coordinates,
and have *transform_xy* be the transform from axes coordinates to data
coordinates; this method then returns the range of data coordinates
that span the actual axes.
The computation is done by sampling ``nx * ny`` equispaced points in
the ``(x1, y1, x2, y2)`` box and finding the resulting points with
extremal coordinates; then adding some padding to take into account the
finite sampling.
As each sampling step covers a relative range of *1/nx* or *1/ny*,
the padding is computed by expanding the span covered by the extremal
coordinates by these fractions.
"""
x, y = np.meshgrid(
np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny))
xt, yt = transform_xy(np.ravel(x), np.ravel(y))
return self._add_pad(xt.min(), xt.max(), yt.min(), yt.max())
def _add_pad(self, x_min, x_max, y_min, y_max):
"""Perform the padding mentioned in `__call__`."""
dx = (x_max - x_min) / self.nx
dy = (y_max - y_min) / self.ny
return x_min - dx, x_max + dx, y_min - dy, y_max + dy
class _User2DTransform(Transform):
"""A transform defined by two user-set functions."""
input_dims = output_dims = 2
def __init__(self, forward, backward):
"""
Parameters
----------
forward, backward : callable
The forward and backward transforms, taking ``x`` and ``y`` as
separate arguments and returning ``(tr_x, tr_y)``.
"""
# The normal Matplotlib convention would be to take and return an
# (N, 2) array but axisartist uses the transposed version.
super().__init__()
self._forward = forward
self._backward = backward
def transform_non_affine(self, values):
# docstring inherited
return np.transpose(self._forward(*np.transpose(values)))
def inverted(self):
# docstring inherited
return type(self)(self._backward, self._forward)
class GridFinder:
"""
Internal helper for `~.grid_helper_curvelinear.GridHelperCurveLinear`, with
the same constructor parameters; should not be directly instantiated.
"""
def __init__(self,
transform,
extreme_finder=None,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
if extreme_finder is None:
extreme_finder = ExtremeFinderSimple(20, 20)
if grid_locator1 is None:
grid_locator1 = MaxNLocator()
if grid_locator2 is None:
grid_locator2 = MaxNLocator()
if tick_formatter1 is None:
tick_formatter1 = FormatterPrettyPrint()
if tick_formatter2 is None:
tick_formatter2 = FormatterPrettyPrint()
self.extreme_finder = extreme_finder
self.grid_locator1 = grid_locator1
self.grid_locator2 = grid_locator2
self.tick_formatter1 = tick_formatter1
self.tick_formatter2 = tick_formatter2
self.set_transform(transform)
def _format_ticks(self, idx, direction, factor, levels):
"""
Helper to support both standard formatters (inheriting from
`.mticker.Formatter`) and axisartist-specific ones; should be called instead of
directly calling ``self.tick_formatter1`` and ``self.tick_formatter2``. This
method should be considered as a temporary workaround which will be removed in
the future at the same time as axisartist-specific formatters.
"""
fmt = _api.check_getitem(
{1: self.tick_formatter1, 2: self.tick_formatter2}, idx=idx)
return (fmt.format_ticks(levels) if isinstance(fmt, mticker.Formatter)
else fmt(direction, factor, levels))
def get_grid_info(self, x1, y1, x2, y2):
"""
lon_values, lat_values : list of grid values. if integer is given,
rough number of grids in each direction.
"""
extremes = self.extreme_finder(self.inv_transform_xy, x1, y1, x2, y2)
# min & max rage of lat (or lon) for each grid line will be drawn.
# i.e., gridline of lon=0 will be drawn from lat_min to lat_max.
lon_min, lon_max, lat_min, lat_max = extremes
lon_levs, lon_n, lon_factor = self.grid_locator1(lon_min, lon_max)
lon_levs = np.asarray(lon_levs)
lat_levs, lat_n, lat_factor = self.grid_locator2(lat_min, lat_max)
lat_levs = np.asarray(lat_levs)
lon_values = lon_levs[:lon_n] / lon_factor
lat_values = lat_levs[:lat_n] / lat_factor
lon_lines, lat_lines = self._get_raw_grid_lines(lon_values,
lat_values,
lon_min, lon_max,
lat_min, lat_max)
bb = Bbox.from_extents(x1, y1, x2, y2).expanded(1 + 2e-10, 1 + 2e-10)
grid_info = {
"extremes": extremes,
# "lon", "lat", filled below.
}
for idx, lon_or_lat, levs, factor, values, lines in [
(1, "lon", lon_levs, lon_factor, lon_values, lon_lines),
(2, "lat", lat_levs, lat_factor, lat_values, lat_lines),
]:
grid_info[lon_or_lat] = gi = {
"lines": [[l] for l in lines],
"ticks": {"left": [], "right": [], "bottom": [], "top": []},
}
for (lx, ly), v, level in zip(lines, values, levs):
all_crossings = _find_line_box_crossings(np.column_stack([lx, ly]), bb)
for side, crossings in zip(
["left", "right", "bottom", "top"], all_crossings):
for crossing in crossings:
gi["ticks"][side].append({"level": level, "loc": crossing})
for side in gi["ticks"]:
levs = [tick["level"] for tick in gi["ticks"][side]]
labels = self._format_ticks(idx, side, factor, levs)
for tick, label in zip(gi["ticks"][side], labels):
tick["label"] = label
return grid_info
def _get_raw_grid_lines(self,
lon_values, lat_values,
lon_min, lon_max, lat_min, lat_max):
lons_i = np.linspace(lon_min, lon_max, 100) # for interpolation
lats_i = np.linspace(lat_min, lat_max, 100)
lon_lines = [self.transform_xy(np.full_like(lats_i, lon), lats_i)
for lon in lon_values]
lat_lines = [self.transform_xy(lons_i, np.full_like(lons_i, lat))
for lat in lat_values]
return lon_lines, lat_lines
def set_transform(self, aux_trans):
if isinstance(aux_trans, Transform):
self._aux_transform = aux_trans
elif len(aux_trans) == 2 and all(map(callable, aux_trans)):
self._aux_transform = _User2DTransform(*aux_trans)
else:
raise TypeError("'aux_trans' must be either a Transform "
"instance or a pair of callables")
def get_transform(self):
return self._aux_transform
update_transform = set_transform # backcompat alias.
def transform_xy(self, x, y):
return self._aux_transform.transform(np.column_stack([x, y])).T
def inv_transform_xy(self, x, y):
return self._aux_transform.inverted().transform(
np.column_stack([x, y])).T
def update(self, **kwargs):
for k, v in kwargs.items():
if k in ["extreme_finder",
"grid_locator1",
"grid_locator2",
"tick_formatter1",
"tick_formatter2"]:
setattr(self, k, v)
else:
raise ValueError(f"Unknown update property {k!r}")
class MaxNLocator(mticker.MaxNLocator):
def __init__(self, nbins=10, steps=None,
trim=True,
integer=False,
symmetric=False,
prune=None):
# trim argument has no effect. It has been left for API compatibility
super().__init__(nbins, steps=steps, integer=integer,
symmetric=symmetric, prune=prune)
self.create_dummy_axis()
def __call__(self, v1, v2):
locs = super().tick_values(v1, v2)
return np.array(locs), len(locs), 1 # 1: factor (see angle_helper)
class FixedLocator:
def __init__(self, locs):
self._locs = locs
def __call__(self, v1, v2):
v1, v2 = sorted([v1, v2])
locs = np.array([l for l in self._locs if v1 <= l <= v2])
return locs, len(locs), 1 # 1: factor (see angle_helper)
# Tick Formatter
class FormatterPrettyPrint:
def __init__(self, useMathText=True):
self._fmt = mticker.ScalarFormatter(
useMathText=useMathText, useOffset=False)
self._fmt.create_dummy_axis()
def __call__(self, direction, factor, values):
return self._fmt.format_ticks(values)
class DictFormatter:
def __init__(self, format_dict, formatter=None):
"""
format_dict : dictionary for format strings to be used.
formatter : fall-back formatter
"""
super().__init__()
self._format_dict = format_dict
self._fallback_formatter = formatter
def __call__(self, direction, factor, values):
"""
factor is ignored if value is found in the dictionary
"""
if self._fallback_formatter:
fallback_strings = self._fallback_formatter(
direction, factor, values)
else:
fallback_strings = [""] * len(values)
return [self._format_dict.get(k, v)
for k, v in zip(values, fallback_strings)]
|