File: whats_new_3.10.0.rst

package info (click to toggle)
matplotlib 3.10.7%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 72,816 kB
  • sloc: python: 147,545; cpp: 62,988; objc: 1,679; ansic: 1,426; javascript: 788; makefile: 92; sh: 53
file content (569 lines) | stat: -rw-r--r-- 18,969 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
===================================================
What's new in Matplotlib 3.10.0 (December 13, 2024)
===================================================

For a list of all of the issues and pull requests since the last revision, see the
:ref:`github-stats`.

.. contents:: Table of Contents
   :depth: 4

.. toctree::
   :maxdepth: 4


New more-accessible color cycle
-------------------------------

A new color cycle named 'petroff10' was added. This cycle was constructed using a
combination of algorithmically-enforced accessibility constraints, including
color-vision-deficiency modeling, and a machine-learning-based aesthetics model
developed from a crowdsourced color-preference survey. It aims to be both
generally pleasing aesthetically and colorblind accessible such that it could
serve as a default in the aim of universal design. For more details
see `Petroff, M. A.: "Accessible Color Sequences for Data Visualization"
<https://arxiv.org/abs/2107.02270>`_ and related `SciPy talk`_. A demonstration
is included in the style sheets reference_. To load this color cycle in place
of the default::

  import matplotlib.pyplot as plt
  plt.style.use('petroff10')

.. _reference: https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
.. _SciPy talk: https://www.youtube.com/watch?v=Gapv8wR5DYU

Dark-mode diverging colormaps
-----------------------------

Three diverging colormaps have been added: "berlin", "managua", and "vanimo".
They are dark-mode diverging colormaps, with minimum lightness at the center,
and maximum at the extremes. These are taken from F. Crameri's Scientific
colour maps version 8.0.1 (DOI: https://doi.org/10.5281/zenodo.1243862).


.. plot::
    :include-source: true
    :alt: Example figures using "imshow" with dark-mode diverging colormaps on positive and negative data. First panel: "berlin" (blue to red with a black center); second panel: "managua" (orange to cyan with a dark purple center); third panel: "vanimo" (pink to green with a black center).

    import numpy as np
    import matplotlib.pyplot as plt

    vals = np.linspace(-5, 5, 100)
    x, y = np.meshgrid(vals, vals)
    img = np.sin(x*y)

    _, ax = plt.subplots(1, 3)
    ax[0].imshow(img, cmap=plt.cm.berlin)
    ax[1].imshow(img, cmap=plt.cm.managua)
    ax[2].imshow(img, cmap=plt.cm.vanimo)



Plotting and Annotation improvements
====================================


Specifying a single color in ``contour`` and ``contourf``
---------------------------------------------------------

`~.Axes.contour` and `~.Axes.contourf` previously accepted a single color
provided it was expressed as a string.  This restriction has now been removed
and a single color in any format described in the :ref:`colors_def` tutorial
may be passed.

.. plot::
    :include-source: true
    :alt: Two-panel example contour plots.  The left panel has all transparent red contours.  The right panel has all dark blue contours.

    import matplotlib.pyplot as plt

    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(6, 3))
    z = [[0, 1], [1, 2]]

    ax1.contour(z, colors=('r', 0.4))
    ax2.contour(z, colors=(0.1, 0.2, 0.5))

    plt.show()

Vectorized ``hist`` style parameters
------------------------------------

The parameters *hatch*, *edgecolor*, *facecolor*, *linewidth* and *linestyle*
of the `~matplotlib.axes.Axes.hist` method are now vectorized.
This means that you can pass in individual parameters for each histogram
when the input *x* has multiple datasets.


.. plot::
    :include-source: true
    :alt: Four charts, each displaying stacked histograms of three Poisson distributions. Each chart differentiates the histograms using various parameters: top left uses different linewidths, top right uses different hatches, bottom left uses different edgecolors, and bottom right uses different facecolors. Each histogram on the left side also has a different edgecolor.

    import matplotlib.pyplot as plt
    import numpy as np
    np.random.seed(19680801)

    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(9, 9))

    data1 = np.random.poisson(5, 1000)
    data2 = np.random.poisson(7, 1000)
    data3 = np.random.poisson(10, 1000)

    labels = ["Data 1", "Data 2", "Data 3"]

    ax1.hist([data1, data2, data3], bins=range(17), histtype="step", stacked=True,
             edgecolor=["red", "green", "blue"], linewidth=[1, 2, 3])
    ax1.set_title("Different linewidths")
    ax1.legend(labels)

    ax2.hist([data1, data2, data3], bins=range(17), histtype="barstacked",
             hatch=["/", ".", "*"])
    ax2.set_title("Different hatch patterns")
    ax2.legend(labels)

    ax3.hist([data1, data2, data3], bins=range(17), histtype="bar", fill=False,
             edgecolor=["red", "green", "blue"], linestyle=["--", "-.", ":"])
    ax3.set_title("Different linestyles")
    ax3.legend(labels)

    ax4.hist([data1, data2, data3], bins=range(17), histtype="barstacked",
             facecolor=["red", "green", "blue"])
    ax4.set_title("Different facecolors")
    ax4.legend(labels)

    plt.show()

``InsetIndicator`` artist
-------------------------

`~.Axes.indicate_inset` and `~.Axes.indicate_inset_zoom` now return an instance
of `~matplotlib.inset.InsetIndicator` which contains the rectangle and
connector patches.  These patches now update automatically so that

.. code-block:: python

    ax.indicate_inset_zoom(ax_inset)
    ax_inset.set_xlim(new_lim)

now gives the same result as

.. code-block:: python

    ax_inset.set_xlim(new_lim)
    ax.indicate_inset_zoom(ax_inset)

``matplotlib.ticker.EngFormatter`` can computes offsets now
-----------------------------------------------------------

`matplotlib.ticker.EngFormatter` has gained the ability to show an offset text near the
axis. Using logic shared with `matplotlib.ticker.ScalarFormatter`, it is capable of
deciding whether the data qualifies having an offset and show it with an appropriate SI
quantity prefix, and with the supplied ``unit``.

To enable this new behavior, simply pass ``useOffset=True`` when you
instantiate `matplotlib.ticker.EngFormatter`. See example
:doc:`/gallery/ticks/engformatter_offset`.

.. plot:: gallery/ticks/engformatter_offset.py


Fix padding of single colorbar for ``ImageGrid``
------------------------------------------------

``ImageGrid`` with ``cbar_mode="single"`` no longer adds the ``axes_pad`` between the
axes and the colorbar for ``cbar_location`` "left" and "bottom". If desired, add additional spacing
using ``cbar_pad``.

``ax.table`` will accept a pandas DataFrame
--------------------------------------------

The `~.axes.Axes.table` method can now accept a Pandas DataFrame for the ``cellText`` argument.

.. code-block:: python

    import matplotlib.pyplot as plt
    import pandas as pd

    data = {
        'Letter': ['A', 'B', 'C'],
        'Number': [100, 200, 300]
    }

    df = pd.DataFrame(data)
    fig, ax = plt.subplots()
    table = ax.table(df, loc='center')  # or table = ax.table(cellText=df, loc='center')
    ax.axis('off')
    plt.show()


Subfigures are now added in row-major order
-------------------------------------------

``Figure.subfigures`` are now added in row-major order for API consistency.


.. plot::
    :include-source: true
    :alt: Example of creating 3 by 3 subfigures.

    import matplotlib.pyplot as plt

    fig = plt.figure()
    subfigs = fig.subfigures(3, 3)
    x = np.linspace(0, 10, 100)

    for i, sf in enumerate(fig.subfigs):
        ax = sf.subplots()
        ax.plot(x, np.sin(x + i), label=f'Subfigure {i+1}')
        sf.suptitle(f'Subfigure {i+1}')
        ax.set_xticks([])
        ax.set_yticks([])
    plt.show()


``boxplot`` and ``bxp`` orientation parameter
---------------------------------------------

Boxplots have a new parameter *orientation: {"vertical", "horizontal"}*
to change the orientation of the plot. This replaces the deprecated
*vert: bool* parameter.


.. plot::
    :include-source: true
    :alt: Example of creating 4 horizontal boxplots.

    import matplotlib.pyplot as plt
    import numpy as np

    fig, ax = plt.subplots()
    np.random.seed(19680801)
    all_data = [np.random.normal(0, std, 100) for std in range(6, 10)]

    ax.boxplot(all_data, orientation='horizontal')
    plt.show()


``violinplot`` and ``violin`` orientation parameter
---------------------------------------------------

Violinplots have a new parameter *orientation: {"vertical", "horizontal"}*
to change the orientation of the plot. This will replace the deprecated
*vert: bool* parameter.


.. plot::
    :include-source: true
    :alt: Example of creating 4 horizontal violinplots.

    import matplotlib.pyplot as plt
    import numpy as np

    fig, ax = plt.subplots()
    np.random.seed(19680801)
    all_data = [np.random.normal(0, std, 100) for std in range(6, 10)]

    ax.violinplot(all_data, orientation='horizontal')
    plt.show()

``FillBetweenPolyCollection``
-----------------------------

The new class :class:`matplotlib.collections.FillBetweenPolyCollection` provides
the ``set_data`` method, enabling e.g. resampling
(:file:`galleries/event_handling/resample.html`).
:func:`matplotlib.axes.Axes.fill_between` and
:func:`matplotlib.axes.Axes.fill_betweenx` now return this new class.

.. code-block:: python

    import numpy as np
    from matplotlib import pyplot as plt

    t = np.linspace(0, 1)

    fig, ax = plt.subplots()
    coll = ax.fill_between(t, -t**2, t**2)
    fig.savefig("before.png")

    coll.set_data(t, -t**4, t**4)
    fig.savefig("after.png")


``matplotlib.colorizer.Colorizer`` as container for ``norm`` and ``cmap``
-------------------------------------------------------------------------

 `matplotlib.colorizer.Colorizer` encapsulates the data-to-color pipeline. It makes reuse of colormapping easier, e.g. across multiple images. Plotting methods that support *norm* and *cmap* keyword arguments now also accept a *colorizer* keyword argument.

In the following example the norm and cmap are changed on multiple plots simultaneously:


.. plot::
    :include-source: true
    :alt: Example use of a matplotlib.colorizer.Colorizer object

    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import numpy as np

    x = np.linspace(-2, 2, 50)[np.newaxis, :]
    y = np.linspace(-2, 2, 50)[:, np.newaxis]
    im_0 = 1 * np.exp( - (x**2 + y**2 - x * y))
    im_1 = 2 * np.exp( - (x**2 + y**2 + x * y))

    colorizer = mpl.colorizer.Colorizer()
    fig, axes = plt.subplots(1, 2, figsize=(6, 2))
    cim_0 = axes[0].imshow(im_0, colorizer=colorizer)
    fig.colorbar(cim_0)
    cim_1 = axes[1].imshow(im_1, colorizer=colorizer)
    fig.colorbar(cim_1)

    colorizer.vmin = 0.5
    colorizer.vmax = 2
    colorizer.cmap = 'RdBu'

All plotting methods that use a data-to-color pipeline now create a colorizer object if one is not provided. This can be re-used by subsequent artists such that they will share a single data-to-color pipeline:

.. plot::
    :include-source: true
    :alt: Example of how artists that share a ``colorizer`` have coupled colormaps

    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import numpy as np

    x = np.linspace(-2, 2, 50)[np.newaxis, :]
    y = np.linspace(-2, 2, 50)[:, np.newaxis]
    im_0 = 1 * np.exp( - (x**2 + y**2 - x * y))
    im_1 = 2 * np.exp( - (x**2 + y**2 + x * y))

    fig, axes = plt.subplots(1, 2, figsize=(6, 2))

    cim_0 = axes[0].imshow(im_0, cmap='RdBu', vmin=0.5, vmax=2)
    fig.colorbar(cim_0)
    cim_1 = axes[1].imshow(im_1, colorizer=cim_0.colorizer)
    fig.colorbar(cim_1)

    cim_1.cmap = 'rainbow'

3D plotting improvements
========================


Fill between 3D lines
---------------------

The new method `.Axes3D.fill_between` allows to fill the surface between two
3D lines with polygons.

.. plot::
    :include-source:
    :alt: Example of 3D fill_between

    N = 50
    theta = np.linspace(0, 2*np.pi, N)

    x1 = np.cos(theta)
    y1 = np.sin(theta)
    z1 = 0.1 * np.sin(6 * theta)

    x2 = 0.6 * np.cos(theta)
    y2 = 0.6 * np.sin(theta)
    z2 = 2  # Note that scalar values work in addition to length N arrays

    fig = plt.figure()
    ax = fig.add_subplot(projection='3d')
    ax.fill_between(x1, y1, z1, x2, y2, z2,
                    alpha=0.5, edgecolor='k')

Rotating 3d plots with the mouse
--------------------------------

Rotating three-dimensional plots with the mouse has been made more intuitive.
The plot now reacts the same way to mouse movement, independent of the
particular orientation at hand; and it is possible to control all 3 rotational
degrees of freedom (azimuth, elevation, and roll). By default,
it uses a variation on Ken Shoemake's ARCBALL [1]_.
The particular style of mouse rotation can be set via
:rc:`axes3d.mouserotationstyle`.
See also :ref:`toolkit_mouse-rotation`.

To revert to the original mouse rotation style,
create a file ``matplotlibrc`` with contents::

    axes3d.mouserotationstyle: azel

To try out one of the various mouse rotation styles:

.. code::

    import matplotlib as mpl
    mpl.rcParams['axes3d.mouserotationstyle'] = 'trackball'  # 'azel', 'trackball', 'sphere', or 'arcball'

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib import cm

    ax = plt.figure().add_subplot(projection='3d')

    X = np.arange(-5, 5, 0.25)
    Y = np.arange(-5, 5, 0.25)
    X, Y = np.meshgrid(X, Y)
    R = np.sqrt(X**2 + Y**2)
    Z = np.sin(R)

    surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)

    plt.show()


.. [1] Ken Shoemake, "ARCBALL: A user interface for specifying
  three-dimensional rotation using a mouse", in Proceedings of Graphics
  Interface '92, 1992, pp. 151-156, https://doi.org/10.20380/GI1992.18



Data in 3D plots can now be dynamically clipped to the axes view limits
-----------------------------------------------------------------------

All 3D plotting functions now support the *axlim_clip* keyword argument, which
will clip the data to the axes view limits, hiding all data outside those
bounds. This clipping will be dynamically applied in real time while panning
and zooming.

Please note that if one vertex of a line segment or 3D patch is clipped, then
the entire segment or patch will be hidden. Not being able to show partial
lines or patches such that they are "smoothly" cut off at the boundaries of the
view box is a limitation of the current renderer.

.. plot::
    :include-source: true
    :alt: Example of default behavior (blue) and axlim_clip=True (orange)

    import matplotlib.pyplot as plt
    import numpy as np

    fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
    x = np.arange(-5, 5, 0.5)
    y = np.arange(-5, 5, 0.5)
    X, Y = np.meshgrid(x, y)
    R = np.sqrt(X**2 + Y**2)
    Z = np.sin(R)

    # Note that when a line has one vertex outside the view limits, the entire
    # line is hidden. The same is true for 3D patches (not shown).
    # In this example, data where x < 0 or z > 0.5 is clipped.
    ax.plot_wireframe(X, Y, Z, color='C0')
    ax.plot_wireframe(X, Y, Z, color='C1', axlim_clip=True)
    ax.set(xlim=(0, 10), ylim=(-5, 5), zlim=(-1, 0.5))
    ax.legend(['axlim_clip=False (default)', 'axlim_clip=True'])


Preliminary support for free-threaded CPython 3.13
==================================================

Matplotlib 3.10 has preliminary support for the free-threaded build of CPython 3.13. See
https://py-free-threading.github.io, `PEP 703 <https://peps.python.org/pep-0703/>`_ and
the `CPython 3.13 release notes
<https://docs.python.org/3.13/whatsnew/3.13.html#free-threaded-cpython>`_ for more detail
about free-threaded Python.

Support for free-threaded Python does not mean that Matplotlib is wholly thread safe. We
expect that use of a Figure within a single thread will work, and though input data is
usually copied, modification of data objects used for a plot from another thread may
cause inconsistencies in cases where it is not. Use of any global state (such as the
``pyplot`` module) is highly discouraged and unlikely to work consistently. Also note
that most GUI toolkits expect to run on the main thread, so interactive usage may be
limited or unsupported from other threads.

If you are interested in free-threaded Python, for example because you have a
multiprocessing-based workflow that you are interested in running with Python threads, we
encourage testing and experimentation. If you run into problems that you suspect are
because of Matplotlib, please open an issue, checking first if the bug also occurs in the
“regular” non-free-threaded CPython 3.13 build.



Other Improvements
==================

``svg.id`` rcParam
------------------

:rc:`svg.id` lets you insert an ``id`` attribute into the top-level ``<svg>`` tag.

e.g. ``rcParams["svg.id"] = "svg1"`` results in

.. code-block:: XML

    <svg
        xmlns:xlink="http://www.w3.org/1999/xlink"
        width="50pt" height="50pt"
        viewBox="0 0 50 50"
        xmlns="http://www.w3.org/2000/svg"
        version="1.1"
        id="svg1"
    ></svg>

This is useful if you would like to link the entire matplotlib SVG file within
another SVG file with the ``<use>`` tag.

.. code-block:: XML

    <svg>
    <use
        width="50" height="50"
        xlink:href="mpl.svg#svg1" id="use1"
        x="0" y="0"
    /></svg>

Where the ``#svg1`` indicator will now refer to the top level ``<svg>`` tag, and
will hence result in the inclusion of the entire file.

By default, no ``id`` tag is included.

Exception handling control
--------------------------

The exception raised when an invalid keyword parameter is passed now includes
that parameter name as the exception's ``name`` property.  This provides more
control for exception handling:


.. code-block:: python

    import matplotlib.pyplot as plt

    def wobbly_plot(args, **kwargs):
        w = kwargs.pop('wobble_factor', None)

        try:
            plt.plot(args, **kwargs)
        except AttributeError as e:
            raise AttributeError(f'wobbly_plot does not take parameter {e.name}') from e


    wobbly_plot([0, 1], wibble_factor=5)

.. code-block::

    AttributeError: wobbly_plot does not take parameter wibble_factor

Increased Figure limits with Agg renderer
-----------------------------------------

Figures using the Agg renderer are now limited to 2**23 pixels in each
direction, instead of 2**16. Additionally, bugs that caused artists to not
render past 2**15 pixels horizontally have been fixed.

Note that if you are using a GUI backend, it may have its own smaller limits
(which may themselves depend on screen size.)



Miscellaneous Changes
---------------------

- The `matplotlib.ticker.ScalarFormatter` class has gained a new instantiating parameter ``usetex``.
- Creating an Axes is now 20-25% faster due to internal optimizations.
- The API on `.Figure.subfigures` and `.SubFigure` are now considered stable.