1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
===================================================
What's new in Matplotlib 3.10.0 (December 13, 2024)
===================================================
For a list of all of the issues and pull requests since the last revision, see the
:ref:`github-stats`.
.. contents:: Table of Contents
:depth: 4
.. toctree::
:maxdepth: 4
New more-accessible color cycle
-------------------------------
A new color cycle named 'petroff10' was added. This cycle was constructed using a
combination of algorithmically-enforced accessibility constraints, including
color-vision-deficiency modeling, and a machine-learning-based aesthetics model
developed from a crowdsourced color-preference survey. It aims to be both
generally pleasing aesthetically and colorblind accessible such that it could
serve as a default in the aim of universal design. For more details
see `Petroff, M. A.: "Accessible Color Sequences for Data Visualization"
<https://arxiv.org/abs/2107.02270>`_ and related `SciPy talk`_. A demonstration
is included in the style sheets reference_. To load this color cycle in place
of the default::
import matplotlib.pyplot as plt
plt.style.use('petroff10')
.. _reference: https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
.. _SciPy talk: https://www.youtube.com/watch?v=Gapv8wR5DYU
Dark-mode diverging colormaps
-----------------------------
Three diverging colormaps have been added: "berlin", "managua", and "vanimo".
They are dark-mode diverging colormaps, with minimum lightness at the center,
and maximum at the extremes. These are taken from F. Crameri's Scientific
colour maps version 8.0.1 (DOI: https://doi.org/10.5281/zenodo.1243862).
.. plot::
:include-source: true
:alt: Example figures using "imshow" with dark-mode diverging colormaps on positive and negative data. First panel: "berlin" (blue to red with a black center); second panel: "managua" (orange to cyan with a dark purple center); third panel: "vanimo" (pink to green with a black center).
import numpy as np
import matplotlib.pyplot as plt
vals = np.linspace(-5, 5, 100)
x, y = np.meshgrid(vals, vals)
img = np.sin(x*y)
_, ax = plt.subplots(1, 3)
ax[0].imshow(img, cmap=plt.cm.berlin)
ax[1].imshow(img, cmap=plt.cm.managua)
ax[2].imshow(img, cmap=plt.cm.vanimo)
Plotting and Annotation improvements
====================================
Specifying a single color in ``contour`` and ``contourf``
---------------------------------------------------------
`~.Axes.contour` and `~.Axes.contourf` previously accepted a single color
provided it was expressed as a string. This restriction has now been removed
and a single color in any format described in the :ref:`colors_def` tutorial
may be passed.
.. plot::
:include-source: true
:alt: Two-panel example contour plots. The left panel has all transparent red contours. The right panel has all dark blue contours.
import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(6, 3))
z = [[0, 1], [1, 2]]
ax1.contour(z, colors=('r', 0.4))
ax2.contour(z, colors=(0.1, 0.2, 0.5))
plt.show()
Vectorized ``hist`` style parameters
------------------------------------
The parameters *hatch*, *edgecolor*, *facecolor*, *linewidth* and *linestyle*
of the `~matplotlib.axes.Axes.hist` method are now vectorized.
This means that you can pass in individual parameters for each histogram
when the input *x* has multiple datasets.
.. plot::
:include-source: true
:alt: Four charts, each displaying stacked histograms of three Poisson distributions. Each chart differentiates the histograms using various parameters: top left uses different linewidths, top right uses different hatches, bottom left uses different edgecolors, and bottom right uses different facecolors. Each histogram on the left side also has a different edgecolor.
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(19680801)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(9, 9))
data1 = np.random.poisson(5, 1000)
data2 = np.random.poisson(7, 1000)
data3 = np.random.poisson(10, 1000)
labels = ["Data 1", "Data 2", "Data 3"]
ax1.hist([data1, data2, data3], bins=range(17), histtype="step", stacked=True,
edgecolor=["red", "green", "blue"], linewidth=[1, 2, 3])
ax1.set_title("Different linewidths")
ax1.legend(labels)
ax2.hist([data1, data2, data3], bins=range(17), histtype="barstacked",
hatch=["/", ".", "*"])
ax2.set_title("Different hatch patterns")
ax2.legend(labels)
ax3.hist([data1, data2, data3], bins=range(17), histtype="bar", fill=False,
edgecolor=["red", "green", "blue"], linestyle=["--", "-.", ":"])
ax3.set_title("Different linestyles")
ax3.legend(labels)
ax4.hist([data1, data2, data3], bins=range(17), histtype="barstacked",
facecolor=["red", "green", "blue"])
ax4.set_title("Different facecolors")
ax4.legend(labels)
plt.show()
``InsetIndicator`` artist
-------------------------
`~.Axes.indicate_inset` and `~.Axes.indicate_inset_zoom` now return an instance
of `~matplotlib.inset.InsetIndicator` which contains the rectangle and
connector patches. These patches now update automatically so that
.. code-block:: python
ax.indicate_inset_zoom(ax_inset)
ax_inset.set_xlim(new_lim)
now gives the same result as
.. code-block:: python
ax_inset.set_xlim(new_lim)
ax.indicate_inset_zoom(ax_inset)
``matplotlib.ticker.EngFormatter`` can computes offsets now
-----------------------------------------------------------
`matplotlib.ticker.EngFormatter` has gained the ability to show an offset text near the
axis. Using logic shared with `matplotlib.ticker.ScalarFormatter`, it is capable of
deciding whether the data qualifies having an offset and show it with an appropriate SI
quantity prefix, and with the supplied ``unit``.
To enable this new behavior, simply pass ``useOffset=True`` when you
instantiate `matplotlib.ticker.EngFormatter`. See example
:doc:`/gallery/ticks/engformatter_offset`.
.. plot:: gallery/ticks/engformatter_offset.py
Fix padding of single colorbar for ``ImageGrid``
------------------------------------------------
``ImageGrid`` with ``cbar_mode="single"`` no longer adds the ``axes_pad`` between the
axes and the colorbar for ``cbar_location`` "left" and "bottom". If desired, add additional spacing
using ``cbar_pad``.
``ax.table`` will accept a pandas DataFrame
--------------------------------------------
The `~.axes.Axes.table` method can now accept a Pandas DataFrame for the ``cellText`` argument.
.. code-block:: python
import matplotlib.pyplot as plt
import pandas as pd
data = {
'Letter': ['A', 'B', 'C'],
'Number': [100, 200, 300]
}
df = pd.DataFrame(data)
fig, ax = plt.subplots()
table = ax.table(df, loc='center') # or table = ax.table(cellText=df, loc='center')
ax.axis('off')
plt.show()
Subfigures are now added in row-major order
-------------------------------------------
``Figure.subfigures`` are now added in row-major order for API consistency.
.. plot::
:include-source: true
:alt: Example of creating 3 by 3 subfigures.
import matplotlib.pyplot as plt
fig = plt.figure()
subfigs = fig.subfigures(3, 3)
x = np.linspace(0, 10, 100)
for i, sf in enumerate(fig.subfigs):
ax = sf.subplots()
ax.plot(x, np.sin(x + i), label=f'Subfigure {i+1}')
sf.suptitle(f'Subfigure {i+1}')
ax.set_xticks([])
ax.set_yticks([])
plt.show()
``boxplot`` and ``bxp`` orientation parameter
---------------------------------------------
Boxplots have a new parameter *orientation: {"vertical", "horizontal"}*
to change the orientation of the plot. This replaces the deprecated
*vert: bool* parameter.
.. plot::
:include-source: true
:alt: Example of creating 4 horizontal boxplots.
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
np.random.seed(19680801)
all_data = [np.random.normal(0, std, 100) for std in range(6, 10)]
ax.boxplot(all_data, orientation='horizontal')
plt.show()
``violinplot`` and ``violin`` orientation parameter
---------------------------------------------------
Violinplots have a new parameter *orientation: {"vertical", "horizontal"}*
to change the orientation of the plot. This will replace the deprecated
*vert: bool* parameter.
.. plot::
:include-source: true
:alt: Example of creating 4 horizontal violinplots.
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
np.random.seed(19680801)
all_data = [np.random.normal(0, std, 100) for std in range(6, 10)]
ax.violinplot(all_data, orientation='horizontal')
plt.show()
``FillBetweenPolyCollection``
-----------------------------
The new class :class:`matplotlib.collections.FillBetweenPolyCollection` provides
the ``set_data`` method, enabling e.g. resampling
(:file:`galleries/event_handling/resample.html`).
:func:`matplotlib.axes.Axes.fill_between` and
:func:`matplotlib.axes.Axes.fill_betweenx` now return this new class.
.. code-block:: python
import numpy as np
from matplotlib import pyplot as plt
t = np.linspace(0, 1)
fig, ax = plt.subplots()
coll = ax.fill_between(t, -t**2, t**2)
fig.savefig("before.png")
coll.set_data(t, -t**4, t**4)
fig.savefig("after.png")
``matplotlib.colorizer.Colorizer`` as container for ``norm`` and ``cmap``
-------------------------------------------------------------------------
`matplotlib.colorizer.Colorizer` encapsulates the data-to-color pipeline. It makes reuse of colormapping easier, e.g. across multiple images. Plotting methods that support *norm* and *cmap* keyword arguments now also accept a *colorizer* keyword argument.
In the following example the norm and cmap are changed on multiple plots simultaneously:
.. plot::
:include-source: true
:alt: Example use of a matplotlib.colorizer.Colorizer object
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
x = np.linspace(-2, 2, 50)[np.newaxis, :]
y = np.linspace(-2, 2, 50)[:, np.newaxis]
im_0 = 1 * np.exp( - (x**2 + y**2 - x * y))
im_1 = 2 * np.exp( - (x**2 + y**2 + x * y))
colorizer = mpl.colorizer.Colorizer()
fig, axes = plt.subplots(1, 2, figsize=(6, 2))
cim_0 = axes[0].imshow(im_0, colorizer=colorizer)
fig.colorbar(cim_0)
cim_1 = axes[1].imshow(im_1, colorizer=colorizer)
fig.colorbar(cim_1)
colorizer.vmin = 0.5
colorizer.vmax = 2
colorizer.cmap = 'RdBu'
All plotting methods that use a data-to-color pipeline now create a colorizer object if one is not provided. This can be re-used by subsequent artists such that they will share a single data-to-color pipeline:
.. plot::
:include-source: true
:alt: Example of how artists that share a ``colorizer`` have coupled colormaps
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
x = np.linspace(-2, 2, 50)[np.newaxis, :]
y = np.linspace(-2, 2, 50)[:, np.newaxis]
im_0 = 1 * np.exp( - (x**2 + y**2 - x * y))
im_1 = 2 * np.exp( - (x**2 + y**2 + x * y))
fig, axes = plt.subplots(1, 2, figsize=(6, 2))
cim_0 = axes[0].imshow(im_0, cmap='RdBu', vmin=0.5, vmax=2)
fig.colorbar(cim_0)
cim_1 = axes[1].imshow(im_1, colorizer=cim_0.colorizer)
fig.colorbar(cim_1)
cim_1.cmap = 'rainbow'
3D plotting improvements
========================
Fill between 3D lines
---------------------
The new method `.Axes3D.fill_between` allows to fill the surface between two
3D lines with polygons.
.. plot::
:include-source:
:alt: Example of 3D fill_between
N = 50
theta = np.linspace(0, 2*np.pi, N)
x1 = np.cos(theta)
y1 = np.sin(theta)
z1 = 0.1 * np.sin(6 * theta)
x2 = 0.6 * np.cos(theta)
y2 = 0.6 * np.sin(theta)
z2 = 2 # Note that scalar values work in addition to length N arrays
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.fill_between(x1, y1, z1, x2, y2, z2,
alpha=0.5, edgecolor='k')
Rotating 3d plots with the mouse
--------------------------------
Rotating three-dimensional plots with the mouse has been made more intuitive.
The plot now reacts the same way to mouse movement, independent of the
particular orientation at hand; and it is possible to control all 3 rotational
degrees of freedom (azimuth, elevation, and roll). By default,
it uses a variation on Ken Shoemake's ARCBALL [1]_.
The particular style of mouse rotation can be set via
:rc:`axes3d.mouserotationstyle`.
See also :ref:`toolkit_mouse-rotation`.
To revert to the original mouse rotation style,
create a file ``matplotlibrc`` with contents::
axes3d.mouserotationstyle: azel
To try out one of the various mouse rotation styles:
.. code::
import matplotlib as mpl
mpl.rcParams['axes3d.mouserotationstyle'] = 'trackball' # 'azel', 'trackball', 'sphere', or 'arcball'
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
ax = plt.figure().add_subplot(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
plt.show()
.. [1] Ken Shoemake, "ARCBALL: A user interface for specifying
three-dimensional rotation using a mouse", in Proceedings of Graphics
Interface '92, 1992, pp. 151-156, https://doi.org/10.20380/GI1992.18
Data in 3D plots can now be dynamically clipped to the axes view limits
-----------------------------------------------------------------------
All 3D plotting functions now support the *axlim_clip* keyword argument, which
will clip the data to the axes view limits, hiding all data outside those
bounds. This clipping will be dynamically applied in real time while panning
and zooming.
Please note that if one vertex of a line segment or 3D patch is clipped, then
the entire segment or patch will be hidden. Not being able to show partial
lines or patches such that they are "smoothly" cut off at the boundaries of the
view box is a limitation of the current renderer.
.. plot::
:include-source: true
:alt: Example of default behavior (blue) and axlim_clip=True (orange)
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
x = np.arange(-5, 5, 0.5)
y = np.arange(-5, 5, 0.5)
X, Y = np.meshgrid(x, y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
# Note that when a line has one vertex outside the view limits, the entire
# line is hidden. The same is true for 3D patches (not shown).
# In this example, data where x < 0 or z > 0.5 is clipped.
ax.plot_wireframe(X, Y, Z, color='C0')
ax.plot_wireframe(X, Y, Z, color='C1', axlim_clip=True)
ax.set(xlim=(0, 10), ylim=(-5, 5), zlim=(-1, 0.5))
ax.legend(['axlim_clip=False (default)', 'axlim_clip=True'])
Preliminary support for free-threaded CPython 3.13
==================================================
Matplotlib 3.10 has preliminary support for the free-threaded build of CPython 3.13. See
https://py-free-threading.github.io, `PEP 703 <https://peps.python.org/pep-0703/>`_ and
the `CPython 3.13 release notes
<https://docs.python.org/3.13/whatsnew/3.13.html#free-threaded-cpython>`_ for more detail
about free-threaded Python.
Support for free-threaded Python does not mean that Matplotlib is wholly thread safe. We
expect that use of a Figure within a single thread will work, and though input data is
usually copied, modification of data objects used for a plot from another thread may
cause inconsistencies in cases where it is not. Use of any global state (such as the
``pyplot`` module) is highly discouraged and unlikely to work consistently. Also note
that most GUI toolkits expect to run on the main thread, so interactive usage may be
limited or unsupported from other threads.
If you are interested in free-threaded Python, for example because you have a
multiprocessing-based workflow that you are interested in running with Python threads, we
encourage testing and experimentation. If you run into problems that you suspect are
because of Matplotlib, please open an issue, checking first if the bug also occurs in the
“regular” non-free-threaded CPython 3.13 build.
Other Improvements
==================
``svg.id`` rcParam
------------------
:rc:`svg.id` lets you insert an ``id`` attribute into the top-level ``<svg>`` tag.
e.g. ``rcParams["svg.id"] = "svg1"`` results in
.. code-block:: XML
<svg
xmlns:xlink="http://www.w3.org/1999/xlink"
width="50pt" height="50pt"
viewBox="0 0 50 50"
xmlns="http://www.w3.org/2000/svg"
version="1.1"
id="svg1"
></svg>
This is useful if you would like to link the entire matplotlib SVG file within
another SVG file with the ``<use>`` tag.
.. code-block:: XML
<svg>
<use
width="50" height="50"
xlink:href="mpl.svg#svg1" id="use1"
x="0" y="0"
/></svg>
Where the ``#svg1`` indicator will now refer to the top level ``<svg>`` tag, and
will hence result in the inclusion of the entire file.
By default, no ``id`` tag is included.
Exception handling control
--------------------------
The exception raised when an invalid keyword parameter is passed now includes
that parameter name as the exception's ``name`` property. This provides more
control for exception handling:
.. code-block:: python
import matplotlib.pyplot as plt
def wobbly_plot(args, **kwargs):
w = kwargs.pop('wobble_factor', None)
try:
plt.plot(args, **kwargs)
except AttributeError as e:
raise AttributeError(f'wobbly_plot does not take parameter {e.name}') from e
wobbly_plot([0, 1], wibble_factor=5)
.. code-block::
AttributeError: wobbly_plot does not take parameter wibble_factor
Increased Figure limits with Agg renderer
-----------------------------------------
Figures using the Agg renderer are now limited to 2**23 pixels in each
direction, instead of 2**16. Additionally, bugs that caused artists to not
render past 2**15 pixels horizontally have been fixed.
Note that if you are using a GUI backend, it may have its own smaller limits
(which may themselves depend on screen size.)
Miscellaneous Changes
---------------------
- The `matplotlib.ticker.ScalarFormatter` class has gained a new instantiating parameter ``usetex``.
- Creating an Axes is now 20-25% faster due to internal optimizations.
- The API on `.Figure.subfigures` and `.SubFigure` are now considered stable.
|