1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
"""
The Colorizer class which handles the data to color pipeline via a
normalization and a colormap.
.. admonition:: Provisional status of colorizer
The ``colorizer`` module and classes in this file are considered
provisional and may change at any time without a deprecation period.
.. seealso::
:doc:`/gallery/color/colormap_reference` for a list of builtin colormaps.
:ref:`colormap-manipulation` for examples of how to make colormaps.
:ref:`colormaps` for an in-depth discussion of choosing colormaps.
:ref:`colormapnorms` for more details about data normalization.
"""
import functools
import numpy as np
from numpy import ma
from matplotlib import _api, colors, cbook, scale, artist
import matplotlib as mpl
mpl._docstring.interpd.register(
colorizer_doc="""\
colorizer : `~matplotlib.colorizer.Colorizer` or None, default: None
The Colorizer object used to map color to data. If None, a Colorizer
object is created from a *norm* and *cmap*.""",
)
class Colorizer:
"""
Data to color pipeline.
This pipeline is accessible via `.Colorizer.to_rgba` and executed via
the `.Colorizer.norm` and `.Colorizer.cmap` attributes.
Parameters
----------
cmap: colorbar.Colorbar or str or None, default: None
The colormap used to color data.
norm: colors.Normalize or str or None, default: None
The normalization used to normalize the data
"""
def __init__(self, cmap=None, norm=None):
self._cmap = None
self._set_cmap(cmap)
self._id_norm = None
self._norm = None
self.norm = norm
self.callbacks = cbook.CallbackRegistry(signals=["changed"])
self.colorbar = None
def _scale_norm(self, norm, vmin, vmax, A):
"""
Helper for initial scaling.
Used by public functions that create a ScalarMappable and support
parameters *vmin*, *vmax* and *norm*. This makes sure that a *norm*
will take precedence over *vmin*, *vmax*.
Note that this method does not set the norm.
"""
if vmin is not None or vmax is not None:
self.set_clim(vmin, vmax)
if isinstance(norm, colors.Normalize):
raise ValueError(
"Passing a Normalize instance simultaneously with "
"vmin/vmax is not supported. Please pass vmin/vmax "
"directly to the norm when creating it.")
# always resolve the autoscaling so we have concrete limits
# rather than deferring to draw time.
self.autoscale_None(A)
@property
def norm(self):
return self._norm
@norm.setter
def norm(self, norm):
_api.check_isinstance((colors.Normalize, str, None), norm=norm)
if norm is None:
norm = colors.Normalize()
elif isinstance(norm, str):
try:
scale_cls = scale._scale_mapping[norm]
except KeyError:
raise ValueError(
"Invalid norm str name; the following values are "
f"supported: {', '.join(scale._scale_mapping)}"
) from None
norm = _auto_norm_from_scale(scale_cls)()
if norm is self.norm:
# We aren't updating anything
return
in_init = self.norm is None
# Remove the current callback and connect to the new one
if not in_init:
self.norm.callbacks.disconnect(self._id_norm)
self._norm = norm
self._id_norm = self.norm.callbacks.connect('changed',
self.changed)
if not in_init:
self.changed()
def to_rgba(self, x, alpha=None, bytes=False, norm=True):
"""
Return a normalized RGBA array corresponding to *x*.
In the normal case, *x* is a 1D or 2D sequence of scalars, and
the corresponding `~numpy.ndarray` of RGBA values will be returned,
based on the norm and colormap set for this Colorizer.
There is one special case, for handling images that are already
RGB or RGBA, such as might have been read from an image file.
If *x* is an `~numpy.ndarray` with 3 dimensions,
and the last dimension is either 3 or 4, then it will be
treated as an RGB or RGBA array, and no mapping will be done.
The array can be `~numpy.uint8`, or it can be floats with
values in the 0-1 range; otherwise a ValueError will be raised.
Any NaNs or masked elements will be set to 0 alpha.
If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
will be used to fill in the transparency. If the last dimension
is 4, the *alpha* kwarg is ignored; it does not
replace the preexisting alpha. A ValueError will be raised
if the third dimension is other than 3 or 4.
In either case, if *bytes* is *False* (default), the RGBA
array will be floats in the 0-1 range; if it is *True*,
the returned RGBA array will be `~numpy.uint8` in the 0 to 255 range.
If norm is False, no normalization of the input data is
performed, and it is assumed to be in the range (0-1).
"""
# First check for special case, image input:
if isinstance(x, np.ndarray) and x.ndim == 3:
return self._pass_image_data(x, alpha, bytes, norm)
# Otherwise run norm -> colormap pipeline
x = ma.asarray(x)
if norm:
x = self.norm(x)
rgba = self.cmap(x, alpha=alpha, bytes=bytes)
return rgba
@staticmethod
def _pass_image_data(x, alpha=None, bytes=False, norm=True):
"""
Helper function to pass ndarray of shape (...,3) or (..., 4)
through `to_rgba()`, see `to_rgba()` for docstring.
"""
if x.shape[2] == 3:
if alpha is None:
alpha = 1
if x.dtype == np.uint8:
alpha = np.uint8(alpha * 255)
m, n = x.shape[:2]
xx = np.empty(shape=(m, n, 4), dtype=x.dtype)
xx[:, :, :3] = x
xx[:, :, 3] = alpha
elif x.shape[2] == 4:
xx = x
else:
raise ValueError("Third dimension must be 3 or 4")
if xx.dtype.kind == 'f':
# If any of R, G, B, or A is nan, set to 0
if np.any(nans := np.isnan(x)):
if x.shape[2] == 4:
xx = xx.copy()
xx[np.any(nans, axis=2), :] = 0
if norm and (xx.max() > 1 or xx.min() < 0):
raise ValueError("Floating point image RGB values "
"must be in the 0..1 range.")
if bytes:
xx = (xx * 255).astype(np.uint8)
elif xx.dtype == np.uint8:
if not bytes:
xx = xx.astype(np.float32) / 255
else:
raise ValueError("Image RGB array must be uint8 or "
"floating point; found %s" % xx.dtype)
# Account for any masked entries in the original array
# If any of R, G, B, or A are masked for an entry, we set alpha to 0
if np.ma.is_masked(x):
xx[np.any(np.ma.getmaskarray(x), axis=2), 3] = 0
return xx
def autoscale(self, A):
"""
Autoscale the scalar limits on the norm instance using the
current array
"""
if A is None:
raise TypeError('You must first set_array for mappable')
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
self.norm.autoscale(A)
def autoscale_None(self, A):
"""
Autoscale the scalar limits on the norm instance using the
current array, changing only limits that are None
"""
if A is None:
raise TypeError('You must first set_array for mappable')
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
self.norm.autoscale_None(A)
def _set_cmap(self, cmap):
"""
Set the colormap for luminance data.
Parameters
----------
cmap : `.Colormap` or str or None
"""
# bury import to avoid circular imports
from matplotlib import cm
in_init = self._cmap is None
self._cmap = cm._ensure_cmap(cmap)
if not in_init:
self.changed() # Things are not set up properly yet.
@property
def cmap(self):
return self._cmap
@cmap.setter
def cmap(self, cmap):
self._set_cmap(cmap)
def set_clim(self, vmin=None, vmax=None):
"""
Set the norm limits for image scaling.
Parameters
----------
vmin, vmax : float
The limits.
The limits may also be passed as a tuple (*vmin*, *vmax*) as a
single positional argument.
.. ACCEPTS: (vmin: float, vmax: float)
"""
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm, this causes an inconsistent
# state, to prevent this blocked context manager is used
if vmax is None:
try:
vmin, vmax = vmin
except (TypeError, ValueError):
pass
orig_vmin_vmax = self.norm.vmin, self.norm.vmax
# Blocked context manager prevents callbacks from being triggered
# until both vmin and vmax are updated
with self.norm.callbacks.blocked(signal='changed'):
if vmin is not None:
self.norm.vmin = colors._sanitize_extrema(vmin)
if vmax is not None:
self.norm.vmax = colors._sanitize_extrema(vmax)
# emit a update signal if the limits are changed
if orig_vmin_vmax != (self.norm.vmin, self.norm.vmax):
self.norm.callbacks.process('changed')
def get_clim(self):
"""
Return the values (min, max) that are mapped to the colormap limits.
"""
return self.norm.vmin, self.norm.vmax
def changed(self):
"""
Call this whenever the mappable is changed to notify all the
callbackSM listeners to the 'changed' signal.
"""
self.callbacks.process('changed')
self.stale = True
@property
def vmin(self):
return self.get_clim()[0]
@vmin.setter
def vmin(self, vmin):
self.set_clim(vmin=vmin)
@property
def vmax(self):
return self.get_clim()[1]
@vmax.setter
def vmax(self, vmax):
self.set_clim(vmax=vmax)
@property
def clip(self):
return self.norm.clip
@clip.setter
def clip(self, clip):
self.norm.clip = clip
class _ColorizerInterface:
"""
Base class that contains the interface to `Colorizer` objects from
a `ColorizingArtist` or `.cm.ScalarMappable`.
Note: This class only contain functions that interface the .colorizer
attribute. Other functions that as shared between `.ColorizingArtist`
and `.cm.ScalarMappable` are not included.
"""
def _scale_norm(self, norm, vmin, vmax):
self._colorizer._scale_norm(norm, vmin, vmax, self._A)
def to_rgba(self, x, alpha=None, bytes=False, norm=True):
"""
Return a normalized RGBA array corresponding to *x*.
In the normal case, *x* is a 1D or 2D sequence of scalars, and
the corresponding `~numpy.ndarray` of RGBA values will be returned,
based on the norm and colormap set for this Colorizer.
There is one special case, for handling images that are already
RGB or RGBA, such as might have been read from an image file.
If *x* is an `~numpy.ndarray` with 3 dimensions,
and the last dimension is either 3 or 4, then it will be
treated as an RGB or RGBA array, and no mapping will be done.
The array can be `~numpy.uint8`, or it can be floats with
values in the 0-1 range; otherwise a ValueError will be raised.
Any NaNs or masked elements will be set to 0 alpha.
If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
will be used to fill in the transparency. If the last dimension
is 4, the *alpha* kwarg is ignored; it does not
replace the preexisting alpha. A ValueError will be raised
if the third dimension is other than 3 or 4.
In either case, if *bytes* is *False* (default), the RGBA
array will be floats in the 0-1 range; if it is *True*,
the returned RGBA array will be `~numpy.uint8` in the 0 to 255 range.
If norm is False, no normalization of the input data is
performed, and it is assumed to be in the range (0-1).
"""
return self._colorizer.to_rgba(x, alpha=alpha, bytes=bytes, norm=norm)
def get_clim(self):
"""
Return the values (min, max) that are mapped to the colormap limits.
"""
return self._colorizer.get_clim()
def set_clim(self, vmin=None, vmax=None):
"""
Set the norm limits for image scaling.
Parameters
----------
vmin, vmax : float
The limits.
For scalar data, the limits may also be passed as a
tuple (*vmin*, *vmax*) as a single positional argument.
.. ACCEPTS: (vmin: float, vmax: float)
"""
# If the norm's limits are updated self.changed() will be called
# through the callbacks attached to the norm
self._colorizer.set_clim(vmin, vmax)
def get_alpha(self):
try:
return super().get_alpha()
except AttributeError:
return 1
@property
def cmap(self):
return self._colorizer.cmap
@cmap.setter
def cmap(self, cmap):
self._colorizer.cmap = cmap
def get_cmap(self):
"""Return the `.Colormap` instance."""
return self._colorizer.cmap
def set_cmap(self, cmap):
"""
Set the colormap for luminance data.
Parameters
----------
cmap : `.Colormap` or str or None
"""
self.cmap = cmap
@property
def norm(self):
return self._colorizer.norm
@norm.setter
def norm(self, norm):
self._colorizer.norm = norm
def set_norm(self, norm):
"""
Set the normalization instance.
Parameters
----------
norm : `.Normalize` or str or None
Notes
-----
If there are any colorbars using the mappable for this norm, setting
the norm of the mappable will reset the norm, locator, and formatters
on the colorbar to default.
"""
self.norm = norm
def autoscale(self):
"""
Autoscale the scalar limits on the norm instance using the
current array
"""
self._colorizer.autoscale(self._A)
def autoscale_None(self):
"""
Autoscale the scalar limits on the norm instance using the
current array, changing only limits that are None
"""
self._colorizer.autoscale_None(self._A)
@property
def colorbar(self):
"""
The last colorbar associated with this object. May be None
"""
return self._colorizer.colorbar
@colorbar.setter
def colorbar(self, colorbar):
self._colorizer.colorbar = colorbar
def _format_cursor_data_override(self, data):
# This function overwrites Artist.format_cursor_data(). We cannot
# implement cm.ScalarMappable.format_cursor_data() directly, because
# most cm.ScalarMappable subclasses inherit from Artist first and from
# cm.ScalarMappable second, so Artist.format_cursor_data would always
# have precedence over cm.ScalarMappable.format_cursor_data.
# Note if cm.ScalarMappable is depreciated, this functionality should be
# implemented as format_cursor_data() on ColorizingArtist.
n = self.cmap.N
if np.ma.getmask(data):
return "[]"
normed = self.norm(data)
if np.isfinite(normed):
if isinstance(self.norm, colors.BoundaryNorm):
# not an invertible normalization mapping
cur_idx = np.argmin(np.abs(self.norm.boundaries - data))
neigh_idx = max(0, cur_idx - 1)
# use max diff to prevent delta == 0
delta = np.diff(
self.norm.boundaries[neigh_idx:cur_idx + 2]
).max()
elif self.norm.vmin == self.norm.vmax:
# singular norms, use delta of 10% of only value
delta = np.abs(self.norm.vmin * .1)
else:
# Midpoints of neighboring color intervals.
neighbors = self.norm.inverse(
(int(normed * n) + np.array([0, 1])) / n)
delta = abs(neighbors - data).max()
g_sig_digits = cbook._g_sig_digits(data, delta)
else:
g_sig_digits = 3 # Consistent with default below.
return f"[{data:-#.{g_sig_digits}g}]"
class _ScalarMappable(_ColorizerInterface):
"""
A mixin class to map one or multiple sets of scalar data to RGBA.
The ScalarMappable applies data normalization before returning RGBA colors from
the given `~matplotlib.colors.Colormap`.
"""
# _ScalarMappable exists for compatibility with
# code written before the introduction of the Colorizer
# and ColorizingArtist classes.
# _ScalarMappable can be depreciated so that ColorizingArtist
# inherits directly from _ColorizerInterface.
# in this case, the following changes should occur:
# __init__() has its functionality moved to ColorizingArtist.
# set_array(), get_array(), _get_colorizer() and
# _check_exclusionary_keywords() are moved to ColorizingArtist.
# changed() can be removed so long as colorbar.Colorbar
# is changed to connect to the colorizer instead of the
# ScalarMappable/ColorizingArtist,
# otherwise changed() can be moved to ColorizingArtist.
def __init__(self, norm=None, cmap=None, *, colorizer=None, **kwargs):
"""
Parameters
----------
norm : `.Normalize` (or subclass thereof) or str or None
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
If a `str`, a `.Normalize` subclass is dynamically generated based
on the scale with the corresponding name.
If *None*, *norm* defaults to a *colors.Normalize* object which
initializes its scaling based on the first data processed.
cmap : str or `~matplotlib.colors.Colormap`
The colormap used to map normalized data values to RGBA colors.
"""
super().__init__(**kwargs)
self._A = None
self._colorizer = self._get_colorizer(colorizer=colorizer, norm=norm, cmap=cmap)
self.colorbar = None
self._id_colorizer = self._colorizer.callbacks.connect('changed', self.changed)
self.callbacks = cbook.CallbackRegistry(signals=["changed"])
def set_array(self, A):
"""
Set the value array from array-like *A*.
Parameters
----------
A : array-like or None
The values that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the value array *A*.
"""
if A is None:
self._A = None
return
A = cbook.safe_masked_invalid(A, copy=True)
if not np.can_cast(A.dtype, float, "same_kind"):
raise TypeError(f"Image data of dtype {A.dtype} cannot be "
"converted to float")
self._A = A
if not self.norm.scaled():
self._colorizer.autoscale_None(A)
def get_array(self):
"""
Return the array of values, that are mapped to colors.
The base class `.ScalarMappable` does not make any assumptions on
the dimensionality and shape of the array.
"""
return self._A
def changed(self):
"""
Call this whenever the mappable is changed to notify all the
callbackSM listeners to the 'changed' signal.
"""
self.callbacks.process('changed', self)
self.stale = True
@staticmethod
def _check_exclusionary_keywords(colorizer, **kwargs):
"""
Raises a ValueError if any kwarg is not None while colorizer is not None
"""
if colorizer is not None:
if any([val is not None for val in kwargs.values()]):
raise ValueError("The `colorizer` keyword cannot be used simultaneously"
" with any of the following keywords: "
+ ", ".join(f'`{key}`' for key in kwargs.keys()))
@staticmethod
def _get_colorizer(cmap, norm, colorizer):
if isinstance(colorizer, Colorizer):
_ScalarMappable._check_exclusionary_keywords(
Colorizer, cmap=cmap, norm=norm
)
return colorizer
return Colorizer(cmap, norm)
# The docstrings here must be generic enough to apply to all relevant methods.
mpl._docstring.interpd.register(
cmap_doc="""\
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The Colormap instance or registered colormap name used to map scalar data
to colors.""",
norm_doc="""\
norm : str or `~matplotlib.colors.Normalize`, optional
The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.
If given, this can be one of the following:
- An instance of `.Normalize` or one of its subclasses
(see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc. For a
list of available scales, call `matplotlib.scale.get_scale_names()`.
In that case, a suitable `.Normalize` subclass is dynamically generated
and instantiated.""",
vmin_vmax_doc="""\
vmin, vmax : float, optional
When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).""",
)
class ColorizingArtist(_ScalarMappable, artist.Artist):
"""
Base class for artists that make map data to color using a `.colorizer.Colorizer`.
The `.colorizer.Colorizer` applies data normalization before
returning RGBA colors from a `~matplotlib.colors.Colormap`.
"""
def __init__(self, colorizer, **kwargs):
"""
Parameters
----------
colorizer : `.colorizer.Colorizer`
"""
_api.check_isinstance(Colorizer, colorizer=colorizer)
super().__init__(colorizer=colorizer, **kwargs)
@property
def colorizer(self):
return self._colorizer
@colorizer.setter
def colorizer(self, cl):
_api.check_isinstance(Colorizer, colorizer=cl)
self._colorizer.callbacks.disconnect(self._id_colorizer)
self._colorizer = cl
self._id_colorizer = cl.callbacks.connect('changed', self.changed)
def _set_colorizer_check_keywords(self, colorizer, **kwargs):
"""
Raises a ValueError if any kwarg is not None while colorizer is not None.
"""
self._check_exclusionary_keywords(colorizer, **kwargs)
self.colorizer = colorizer
def _auto_norm_from_scale(scale_cls):
"""
Automatically generate a norm class from *scale_cls*.
This differs from `.colors.make_norm_from_scale` in the following points:
- This function is not a class decorator, but directly returns a norm class
(as if decorating `.Normalize`).
- The scale is automatically constructed with ``nonpositive="mask"``, if it
supports such a parameter, to work around the difference in defaults
between standard scales (which use "clip") and norms (which use "mask").
Note that ``make_norm_from_scale`` caches the generated norm classes
(not the instances) and reuses them for later calls. For example,
``type(_auto_norm_from_scale("log")) == LogNorm``.
"""
# Actually try to construct an instance, to verify whether
# ``nonpositive="mask"`` is supported.
try:
norm = colors.make_norm_from_scale(
functools.partial(scale_cls, nonpositive="mask"))(
colors.Normalize)()
except TypeError:
norm = colors.make_norm_from_scale(scale_cls)(
colors.Normalize)()
return type(norm)
|