1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.projections import PolarAxes
from matplotlib.ticker import FuncFormatter
from matplotlib.transforms import Affine2D, Transform
from matplotlib.testing.decorators import image_comparison
from mpl_toolkits.axisartist import SubplotHost
from mpl_toolkits.axes_grid1.parasite_axes import host_axes_class_factory
from mpl_toolkits.axisartist import angle_helper
from mpl_toolkits.axisartist.axislines import Axes
from mpl_toolkits.axisartist.grid_helper_curvelinear import \
GridHelperCurveLinear
@image_comparison(['custom_transform.png'], style='default', tol=0.2)
def test_custom_transform():
class MyTransform(Transform):
input_dims = output_dims = 2
def __init__(self, resolution):
"""
Resolution is the number of steps to interpolate between each input
line segment to approximate its path in transformed space.
"""
Transform.__init__(self)
self._resolution = resolution
def transform(self, ll):
x, y = ll.T
return np.column_stack([x, y - x])
transform_non_affine = transform
def transform_path(self, path):
ipath = path.interpolated(self._resolution)
return Path(self.transform(ipath.vertices), ipath.codes)
transform_path_non_affine = transform_path
def inverted(self):
return MyTransformInv(self._resolution)
class MyTransformInv(Transform):
input_dims = output_dims = 2
def __init__(self, resolution):
Transform.__init__(self)
self._resolution = resolution
def transform(self, ll):
x, y = ll.T
return np.column_stack([x, y + x])
def inverted(self):
return MyTransform(self._resolution)
fig = plt.figure()
SubplotHost = host_axes_class_factory(Axes)
tr = MyTransform(1)
grid_helper = GridHelperCurveLinear(tr)
ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
fig.add_subplot(ax1)
ax2 = ax1.get_aux_axes(tr, viewlim_mode="equal")
ax2.plot([3, 6], [5.0, 10.])
ax1.set_aspect(1.)
ax1.set_xlim(0, 10)
ax1.set_ylim(0, 10)
ax1.grid(True)
@image_comparison(['polar_box.png'], style='default', tol=0.04)
def test_polar_box():
fig = plt.figure(figsize=(5, 5))
# PolarAxes.PolarTransform takes radian. However, we want our coordinate
# system in degree
tr = (Affine2D().scale(np.pi / 180., 1.) +
PolarAxes.PolarTransform(apply_theta_transforms=False))
# polar projection, which involves cycle, and also has limits in
# its coordinates, needs a special method to find the extremes
# (min, max of the coordinate within the view).
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
lon_cycle=360,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(0, np.inf))
grid_helper = GridHelperCurveLinear(
tr,
extreme_finder=extreme_finder,
grid_locator1=angle_helper.LocatorDMS(12),
tick_formatter1=angle_helper.FormatterDMS(),
tick_formatter2=FuncFormatter(lambda x, p: "eight" if x == 8 else f"{int(x)}"),
)
ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
ax1.axis["right"].major_ticklabels.set_visible(True)
ax1.axis["top"].major_ticklabels.set_visible(True)
# let right axis shows ticklabels for 1st coordinate (angle)
ax1.axis["right"].get_helper().nth_coord_ticks = 0
# let bottom axis shows ticklabels for 2nd coordinate (radius)
ax1.axis["bottom"].get_helper().nth_coord_ticks = 1
fig.add_subplot(ax1)
ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 45, axes=ax1)
axis.label.set_text("Test")
axis.label.set_visible(True)
axis.get_helper().set_extremes(2, 12)
ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1)
axis.label.set_text("Test 2")
axis.get_helper().set_extremes(-180, 90)
# A parasite axes with given transform
ax2 = ax1.get_aux_axes(tr, viewlim_mode="equal")
assert ax2.transData == tr + ax1.transData
# Anything you draw in ax2 will match the ticks and grids of ax1.
ax2.plot(np.linspace(0, 30, 50), np.linspace(10, 10, 50))
ax1.set_aspect(1.)
ax1.set_xlim(-5, 12)
ax1.set_ylim(-5, 10)
ax1.grid(True)
# Remove tol & kerning_factor when this test image is regenerated.
@image_comparison(['axis_direction.png'], style='default', tol=0.13)
def test_axis_direction():
plt.rcParams['text.kerning_factor'] = 6
fig = plt.figure(figsize=(5, 5))
# PolarAxes.PolarTransform takes radian. However, we want our coordinate
# system in degree
tr = (Affine2D().scale(np.pi / 180., 1.) +
PolarAxes.PolarTransform(apply_theta_transforms=False))
# polar projection, which involves cycle, and also has limits in
# its coordinates, needs a special method to find the extremes
# (min, max of the coordinate within the view).
# 20, 20 : number of sampling points along x, y direction
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
lon_cycle=360,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(0, np.inf),
)
grid_locator1 = angle_helper.LocatorDMS(12)
tick_formatter1 = angle_helper.FormatterDMS()
grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
tick_formatter1=tick_formatter1)
ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
for axis in ax1.axis.values():
axis.set_visible(False)
fig.add_subplot(ax1)
ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(
0, 130,
axes=ax1, axis_direction="left")
axis.label.set_text("Test")
axis.label.set_visible(True)
axis.get_helper().set_extremes(0.001, 10)
ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(
0, 50,
axes=ax1, axis_direction="right")
axis.label.set_text("Test")
axis.label.set_visible(True)
axis.get_helper().set_extremes(0.001, 10)
ax1.axis["lon"] = axis = grid_helper.new_floating_axis(
1, 10,
axes=ax1, axis_direction="bottom")
axis.label.set_text("Test 2")
axis.get_helper().set_extremes(50, 130)
axis.major_ticklabels.set_axis_direction("top")
axis.label.set_axis_direction("top")
grid_helper.grid_finder.grid_locator1.set_params(nbins=5)
grid_helper.grid_finder.grid_locator2.set_params(nbins=5)
ax1.set_aspect(1.)
ax1.set_xlim(-8, 8)
ax1.set_ylim(-4, 12)
ax1.grid(True)
|