File: whats_new_3.3.0.rst

package info (click to toggle)
matplotlib 3.3.4-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,264 kB
  • sloc: python: 123,969; cpp: 57,655; ansic: 29,431; objc: 2,244; javascript: 757; makefile: 163; sh: 111
file content (713 lines) | stat: -rw-r--r-- 26,454 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
==============================
What's new in Matplotlib 3.3.0
==============================

For a list of all of the issues and pull requests since the last
revision, see the :ref:`github-stats`.

.. contents:: Table of Contents
   :depth: 4

.. toctree::
   :maxdepth: 4


Figure and Axes creation / management
=====================================

Provisional API for composing semantic axes layouts from text or nested lists
-----------------------------------------------------------------------------

The `.Figure` class has a provisional method to generate complex grids of named
`.axes.Axes` based on nested list input or ASCII art:

.. plot::
   :include-source: True

   axd = plt.figure(constrained_layout=True).subplot_mosaic(
       [['.', 'histx'],
        ['histy', 'scat']]
   )
   for k, ax in axd.items():
       ax.text(0.5, 0.5, k,
               ha='center', va='center', fontsize=36,
               color='darkgrey')

or as a string (with single-character Axes labels):

.. plot::
   :include-source: True

   axd = plt.figure(constrained_layout=True).subplot_mosaic(
       """
       TTE
       L.E
       """)
   for k, ax in axd.items():
       ax.text(0.5, 0.5, k,
               ha='center', va='center', fontsize=36,
               color='darkgrey')

See :ref:`sphx_glr_tutorials_provisional_mosaic.py` for more
details and examples.

``GridSpec.subplots()``
-----------------------

The `.GridSpec` class gained a `~.GridSpecBase.subplots` method, so that one
can write ::

    fig.add_gridspec(2, 2, height_ratios=[3, 1]).subplots()

as an alternative to ::

    fig.subplots(2, 2, gridspec_kw={"height_ratios": [3, 1]})

New ``Axes.sharex``, ``Axes.sharey`` methods
--------------------------------------------

These new methods allow sharing axes *immediately* after creating them. Note
that behavior is indeterminate if axes are not shared immediately after
creation.

For example, they can be used to selectively link some axes created all
together using `~.Figure.subplot_mosaic`::

    fig = plt.figure(constrained_layout=True)
    axd = fig.subplot_mosaic([['.', 'histx'], ['histy', 'scat']],
                             gridspec_kw={'width_ratios': [1, 7],
                                          'height_ratios': [2, 7]})

    axd['histx'].sharex(axd['scat'])
    axd['histy'].sharey(axd['scat'])

.. plot::

    np.random.seed(0)
    x = np.random.random(100) * 100 + 20
    y = np.random.random(100) * 50 + 25
    c = np.random.random(100) - 0.5

    fig = plt.figure(constrained_layout=True)
    axd = fig.subplot_mosaic([['.', 'histx'], ['histy', 'scat']],
                             gridspec_kw={'width_ratios': [1, 7],
                                          'height_ratios': [2, 7]})

    axd['histy'].invert_xaxis()
    axd['histx'].sharex(axd['scat'])
    axd['histy'].sharey(axd['scat'])

    im = axd['scat'].scatter(x, y, c=c, cmap='RdBu', picker=True)
    fig.colorbar(im, orientation='horizontal', ax=axd['scat'], shrink=0.8)

    axd['histx'].hist(x)
    axd['histy'].hist(y, orientation='horizontal')

tight_layout now supports suptitle
----------------------------------

Previous versions did not consider `.Figure.suptitle`, so it may overlap with
other artists after calling `~.Figure.tight_layout`:

.. plot::

    fig, axs = plt.subplots(1, 3)
    for i, ax in enumerate(axs):
        ax.plot([1, 2, 3])
        ax.set_title(f'Axes {i}')

    t = fig.suptitle('suptitle')
    t.set_in_layout(False)
    fig.tight_layout()

From now on, the ``suptitle`` will be considered:

.. plot::

    fig, axs = plt.subplots(1, 3)
    for i, ax in enumerate(axs):
        ax.plot([1, 2, 3])
        ax.set_title(f'Axes {i}')

    fig.suptitle('suptitle')
    fig.tight_layout()

Setting axes box aspect
-----------------------

It is now possible to set the aspect of an axes box directly via
`~.Axes.set_box_aspect`. The box aspect is the ratio between axes height and
axes width in physical units, independent of the data limits. This is useful
to, e.g., produce a square plot, independent of the data it contains, or to
have a non-image plot with the same axes dimensions next to an image plot with
fixed (data-)aspect.

For use cases check out the :doc:`Axes box aspect
</gallery/subplots_axes_and_figures/axes_box_aspect>` example.


Colors and colormaps
====================

Turbo colormap
--------------

Turbo is an improved rainbow colormap for visualization, created by the Google
AI team for computer vision and machine learning. Its purpose is to
display depth and disparity data. Please see the `Google AI Blog
<https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html>`_
for further details.

.. plot::

    gradient = np.linspace(0, 1, 256)
    gradient = np.vstack((gradient, gradient))
    cmaps = ['turbo', 'jet', 'gist_rainbow_r', 'hsv_r']

    fig, axs = plt.subplots(len(cmaps), constrained_layout=True)
    for name, ax in zip(cmaps, axs):
        ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
        ax.set_title(name)
        ax.set_axis_off()

``colors.BoundaryNorm`` supports *extend* keyword argument
----------------------------------------------------------

`~.colors.BoundaryNorm` now has an *extend* keyword argument, analogous to
*extend* in `~.axes.Axes.contourf`. When set to 'both', 'min', or 'max', it
maps the corresponding out-of-range values to `~.colors.Colormap` lookup-table
indices near the appropriate ends of their range so that the colors for out-of
range values are adjacent to, but distinct from, their in-range neighbors. The
colorbar inherits the *extend* argument from the norm, so with
``extend='both'``, for example, the colorbar will have triangular extensions
for out-of-range values with colors that differ from adjacent in-range colors.

  .. plot::

    import matplotlib.pyplot as plt
    from matplotlib.colors import BoundaryNorm
    import numpy as np

    # Make the data
    dx, dy = 0.05, 0.05
    y, x = np.mgrid[slice(1, 5 + dy, dy),
                    slice(1, 5 + dx, dx)]
    z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)
    z = z[:-1, :-1]

    # Z roughly varies between -1 and +1.
    # Color boundary levels range from -0.8 to 0.8, so there are out-of-bounds
    # areas.
    levels = [-0.8, -0.5, -0.2, 0.2, 0.5, 0.8]
    cmap = plt.get_cmap('PiYG')

    fig, axs = plt.subplots(nrows=2, constrained_layout=True, sharex=True)

    # Before this change:
    norm = BoundaryNorm(levels, ncolors=cmap.N)
    im = axs[0].pcolormesh(x, y, z, cmap=cmap, norm=norm)
    fig.colorbar(im, ax=axs[0], extend='both')
    axs[0].axis([x.min(), x.max(), y.min(), y.max()])
    axs[0].set_title("Colorbar with extend='both'")

    # With the new keyword:
    norm = BoundaryNorm(levels, ncolors=cmap.N, extend='both')
    im = axs[1].pcolormesh(x, y, z, cmap=cmap, norm=norm)
    fig.colorbar(im, ax=axs[1])  # note that the colorbar is updated accordingly
    axs[1].axis([x.min(), x.max(), y.min(), y.max()])
    axs[1].set_title("BoundaryNorm with extend='both'")

    plt.show()

Text color for legend labels
----------------------------

The text color of legend labels can now be set by passing a parameter
``labelcolor`` to `~.axes.Axes.legend`. The ``labelcolor`` keyword can be:

* A single color (either a string or RGBA tuple), which adjusts the text color
  of all the labels.
* A list or tuple, allowing the text color of each label to be set
  individually.
* ``linecolor``, which sets the text color of each label to match the
  corresponding line color.
* ``markerfacecolor``, which sets the text color of each label to match the
  corresponding marker face color.
* ``markeredgecolor``,  which sets the text color of each label to match the
  corresponding marker edge color.

.. plot::

    options = ['C3', 'linecolor', 'markerfacecolor', 'markeredgecolor']

    fig, axs = plt.subplots(2, 2, constrained_layout=True)
    for ax, color in zip(axs.flat, options):
        ax.plot([1, 2, 3], marker='o',
                color='C0', markerfacecolor='C1', markeredgecolor='C2',
                linewidth=3, markersize=10, markeredgewidth=3,
                label='a line')

        ax.legend(labelcolor=color)
        ax.set_title(f'labelcolor={color!r}')

        ax.margins(0.1)

Pcolor and Pcolormesh now accept ``shading='nearest'`` and ``'auto'``
---------------------------------------------------------------------

Previously `.axes.Axes.pcolor` and `.axes.Axes.pcolormesh` handled the
situation where *x* and *y* have the same (respective) size as *C* by dropping
the last row and column of *C*, and *x* and *y* are regarded as the edges of
the remaining rows and columns in *C*. However, many users want *x* and *y*
centered on the rows and columns of *C*.

To accommodate this, ``shading='nearest'`` and ``shading='auto'`` are new
allowed strings for the *shading* keyword argument. ``'nearest'`` will center
the color on *x* and *y* if *x* and *y* have the same dimensions as *C*
(otherwise an error will be thrown). ``shading='auto'`` will choose 'flat' or
'nearest' based on the size of *X*, *Y*, *C*.

If ``shading='flat'`` then *X*, and *Y* should have dimensions one larger than
*C*. If *X* and *Y* have the same dimensions as *C*, then the previous behavior
is used and the last row and column of *C* are dropped, and a
DeprecationWarning is emitted.

Users can also specify this by the new :rc:`pcolor.shading` in their
``.matplotlibrc`` or via `.rcParams`.

See :doc:`pcolormesh </gallery/images_contours_and_fields/pcolormesh_grids>`
for examples.


Titles, ticks, and labels
=========================

Align labels to Axes edges
--------------------------

`~.axes.Axes.set_xlabel`, `~.axes.Axes.set_ylabel` and
`.ColorbarBase.set_label` support a parameter ``loc`` for simplified
positioning. For the xlabel, the supported values are 'left', 'center', or
'right'. For the ylabel, the supported values are 'bottom', 'center', or
'top'.

The default is controlled via :rc:`xaxis.labelposition` and
:rc:`yaxis.labelposition`; the Colorbar label takes the rcParam based on its
orientation.

.. plot::

    options = ['left', 'center', 'right']
    fig, axs = plt.subplots(len(options), 1, constrained_layout=True)
    for ax, loc in zip(axs, options):
        ax.plot([1, 2, 3])
        ax.set_xlabel(f'xlabel loc={loc!r}', loc=loc)

    options = ['bottom', 'center', 'top']
    fig, axs = plt.subplots(1, len(options), constrained_layout=True)
    for ax, loc in zip(axs, options):
        ax.plot([1, 2, 3])
        ax.set_ylabel(f'ylabel loc={loc!r}', loc=loc)

Allow tick formatters to be set with str or function inputs
-----------------------------------------------------------

`~.Axis.set_major_formatter` and `~.Axis.set_minor_formatter`
now accept `str` or function inputs in addition to `~.ticker.Formatter`
instances. For a `str` a `~.ticker.StrMethodFormatter` is automatically
generated and used. For a function a `~.ticker.FuncFormatter` is automatically
generated and used. In other words,
::

    ax.xaxis.set_major_formatter('{x} km')
    ax.xaxis.set_minor_formatter(lambda x, pos: str(x-5))

are shortcuts for::

    import matplotlib.ticker as mticker

    ax.xaxis.set_major_formatter(mticker.StrMethodFormatter('{x} km'))
    ax.xaxis.set_minor_formatter(
        mticker.FuncFormatter(lambda x, pos: str(x-5))

.. plot::

    from matplotlib import ticker

    titles = ["'{x} km'", "lambda x, pos: str(x-5)"]
    formatters = ['{x} km', lambda x, pos: str(x-5)]

    fig, axs = plt.subplots(2, 1, figsize=(8, 2), constrained_layout=True)

    for ax, title, formatter in zip(axs, titles, formatters):
        # only show the bottom spine
        ax.yaxis.set_major_locator(ticker.NullLocator())
        for spine in ['top', 'left', 'right']:
            ax.spines[spine].set_visible(False)

        # define tick positions
        ax.xaxis.set_major_locator(ticker.MultipleLocator(1.00))
        ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.25))

        ax.tick_params(which='major', width=1.00, length=5)
        ax.tick_params(which='minor', width=0.75, length=2.5, labelsize=10)
        ax.set_xlim(0, 5)
        ax.set_ylim(0, 1)
        ax.text(0.0, 0.2, f'ax.xaxis.set_major_formatter({title})',
                transform=ax.transAxes, fontsize=14, fontname='Monospace',
                color='tab:blue')

        ax.xaxis.set_major_formatter(formatter)

``Axes.set_title`` gains a *y* keyword argument to control auto positioning
---------------------------------------------------------------------------

`~.axes.Axes.set_title` tries to auto-position the title to avoid any
decorators on the top x-axis. This is not always desirable so now *y* is an
explicit keyword argument of `~.axes.Axes.set_title`. It defaults to *None*
which means to use auto-positioning. If a value is supplied (i.e. the pre-3.0
default was ``y=1.0``) then auto-positioning is turned off. This can also be
set with the new rcParameter :rc:`axes.titley`.

.. plot::

    fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(5, 2))
    axs[0].set_title('y=0.7\n$\sum_{j_n} x_j$', y=0.7)
    axs[1].set_title('y=None\n$\sum_{j_n} x_j$')
    plt.show()

Offset text is now set to the top when using ``axis.tick_top()``
----------------------------------------------------------------

Solves the issue that the power indicator (e.g., 1e4) stayed on the bottom,
even if the ticks were on the top.

Set zorder of contour labels
----------------------------

`~.axes.Axes.clabel` now accepts a *zorder* keyword argument making it easier
to set the *zorder* of contour labels. If not specified, the default *zorder*
of clabels used to always be 3 (i.e. the default *zorder* of `~.text.Text`)
irrespective of the *zorder* passed to
`~.axes.Axes.contour`/`~.axes.Axes.contourf`. The new default *zorder* for
clabels has been changed to (``2 + zorder`` passed to `~.axes.Axes.contour` /
`~.axes.Axes.contourf`).


Other changes
=============

New ``Axes.axline`` method
--------------------------

A new `~.axes.Axes.axline` method has been added to draw infinitely long lines
that pass through two points.

.. plot::
   :include-source: True

   fig, ax = plt.subplots()

   ax.axline((.1, .1), slope=5, color='C0', label='by slope')
   ax.axline((.1, .2), (.8, .7), color='C3', label='by points')

   ax.legend()

``imshow`` now coerces 3D arrays with depth 1 to 2D
---------------------------------------------------

Starting from this version arrays of size MxNx1 will be coerced into MxN
for displaying. This means commands like ``plt.imshow(np.random.rand(3, 3, 1))``
will no longer return an error message that the image shape is invalid.

Better control of ``Axes.pie`` normalization
--------------------------------------------

Previously, `.Axes.pie` would normalize its input *x* if ``sum(x) > 1``, but
would do nothing if the sum were less than 1. This can be confusing, so an
explicit keyword argument *normalize* has been added. By default, the old
behavior is preserved.

By passing *normalize*, one can explicitly control whether any rescaling takes
place or whether partial pies should be created. If normalization is disabled,
and ``sum(x) > 1``, then an error is raised.

.. plot::

    def label(x):
        return [str(v) for v in x]

    x = np.array([0.25, 0.3, 0.3])
    fig, ax = plt.subplots(2, 2, constrained_layout=True)

    ax[0, 0].pie(x, autopct='%1.1f%%', labels=label(x), normalize=False)
    ax[0, 0].set_title('normalize=False')
    ax[0, 1].pie(x, autopct='%1.2f%%', labels=label(x), normalize=True)
    ax[0, 1].set_title('normalize=True')

    # This is supposed to show the 'old' behavior of not passing *normalize*
    # explicitly, but for the purposes of keeping the documentation build
    # warning-free, and future proof for when the deprecation is made
    # permanent, we pass *normalize* here explicitly anyway.
    ax[1, 0].pie(x, autopct='%1.2f%%', labels=label(x), normalize=False)
    ax[1, 0].set_title('normalize unspecified\nsum(x) < 1')
    ax[1, 1].pie(x * 10, autopct='%1.2f%%', labels=label(x * 10),
                 normalize=True)
    ax[1, 1].set_title('normalize unspecified\nsum(x) > 1')

Dates use a modern epoch
------------------------

Matplotlib converts dates to days since an epoch using `.dates.date2num` (via
`matplotlib.units`). Previously, an epoch of ``0000-12-31T00:00:00`` was used
so that ``0001-01-01`` was converted to 1.0. An epoch so distant in the past
meant that a modern date was not able to preserve microseconds because 2000
years times the 2^(-52) resolution of a 64-bit float gives 14 microseconds.

Here we change the default epoch to the more reasonable UNIX default of
``1970-01-01T00:00:00`` which for a modern date has 0.35 microsecond
resolution.  (Finer resolution is not possible because we rely on
`datetime.datetime` for the date locators). Access to the epoch is provided by
`~.dates.get_epoch`, and there is a new :rc:`date.epoch` rcParam. The user may
also call `~.dates.set_epoch`, but it must be set *before* any date conversion
or plotting is used.

If you have data stored as ordinal floats in the old epoch, you can convert
them to the new ordinal using the following formula::

    new_ordinal = old_ordinal + mdates.date2num(np.datetime64('0000-12-31'))

Lines now accept ``MarkerStyle`` instances as input
---------------------------------------------------

Similar to `~.Axes.scatter`, `~.Axes.plot` and `~.lines.Line2D` now accept
`~.markers.MarkerStyle` instances as input for the *marker* parameter::

    plt.plot(..., marker=matplotlib.markers.MarkerStyle("D"))


Fonts
=====

Simple syntax to select fonts by absolute path
----------------------------------------------

Fonts can now be selected by passing an absolute `pathlib.Path` to the *font*
keyword argument of `.Text`.

Improved font weight detection
------------------------------

Matplotlib is now better able to determine the weight of fonts from their
metadata, allowing to differentiate between fonts within the same family more
accurately.


rcParams improvements
=====================

``matplotlib.rc_context`` can be used as a decorator
----------------------------------------------------

`matplotlib.rc_context` can now be used as a decorator (technically, it is now
implemented as a `contextlib.contextmanager`), e.g., ::

    @rc_context({"lines.linewidth": 2})
    def some_function(...):
        ...

rcParams for controlling default "raise window" behavior
--------------------------------------------------------

The new config option :rc:`figure.raise_window` allows disabling of the raising
of the plot window when calling `~.pyplot.show` or `~.pyplot.pause`. The
``MacOSX`` backend is currently not supported.

Add generalized ``mathtext.fallback`` to rcParams
-------------------------------------------------

New  :rc:`mathtext.fallback` rcParam. Takes "cm", "stix", "stixsans"
or "none" to turn fallback off. The rcParam *mathtext.fallback_to_cm* is
deprecated, but if used, will override new fallback.

Add ``contour.linewidth`` to rcParams
-------------------------------------

The new config option :rc:`contour.linewidth` allows to control the default
line width of contours as a float. When set to ``None``, the line widths fall
back to :rc:`lines.linewidth`. The config value is overridden as usual by the
*linewidths* argument passed to `~.axes.Axes.contour` when it is not set to
``None``.


3D Axes improvements
====================

``Axes3D`` no longer distorts the 3D plot to match the 2D aspect ratio
----------------------------------------------------------------------

Plots made with :class:`~mpl_toolkits.mplot3d.axes3d.Axes3D` were previously
stretched to fit a square bounding box. As this stretching was done after the
projection from 3D to 2D, it resulted in distorted images if non-square
bounding boxes were used. As of 3.3, this no longer occurs.

Currently, modes of setting the aspect (via
`~mpl_toolkits.mplot3d.axes3d.Axes3D.set_aspect`) in data space are not
supported for Axes3D but may be in the future. If you want to simulate having
equal aspect in data space, set the ratio of your data limits to match the
value of `~.get_box_aspect`. To control these ratios use the
`~mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect` method which accepts the
ratios as a 3-tuple of X:Y:Z. The default aspect ratio is 4:4:3.

3D axes now support minor ticks
-------------------------------

.. plot::
    :include-source: True

    ax = plt.figure().add_subplot(projection='3d')

    ax.scatter([0, 1, 2], [1, 3, 5], [30, 50, 70])

    ax.set_xticks([0.25, 0.75, 1.25, 1.75], minor=True)
    ax.set_xticklabels(['a', 'b', 'c', 'd'], minor=True)

    ax.set_yticks([1.5, 2.5, 3.5, 4.5], minor=True)
    ax.set_yticklabels(['A', 'B', 'C', 'D'], minor=True)

    ax.set_zticks([35, 45, 55, 65], minor=True)
    ax.set_zticklabels([r'$\alpha$', r'$\beta$', r'$\delta$', r'$\gamma$'],
                       minor=True)

    ax.tick_params(which='major', color='C0', labelcolor='C0', width=5)
    ax.tick_params(which='minor', color='C1', labelcolor='C1', width=3)

Home/Forward/Backward buttons now work with 3D axes
---------------------------------------------------


Interactive tool improvements
=============================

More consistent toolbar behavior across backends
------------------------------------------------

Toolbar features are now more consistent across backends. The history buttons
will auto-disable when there is no further action in a direction. The pan and
zoom buttons will be marked active when they are in use.

In NbAgg and WebAgg, the toolbar buttons are now grouped similarly to other
backends. The WebAgg toolbar now uses the same icons as other backends.

Toolbar icons are now styled for dark themes
--------------------------------------------

On dark themes, toolbar icons will now be inverted. When using the GTK3Agg
backend, toolbar icons are now symbolic, and both foreground and background
colors will follow the theme. Tooltips should also behave correctly.

Cursor text now uses a number of significant digits matching pointing precision
-------------------------------------------------------------------------------

Previously, the x/y position displayed by the cursor text would usually include
far more significant digits than the mouse pointing precision (typically one
pixel). This is now fixed for linear scales.

GTK / Qt zoom rectangle now black and white
-------------------------------------------

This makes it visible even over a dark background.

Event handler simplifications
-----------------------------

The `.backend_bases.key_press_handler` and
`.backend_bases.button_press_handler` event handlers can now be directly
connected to a canvas with ``canvas.mpl_connect("key_press_event",
key_press_handler)`` and ``canvas.mpl_connect("button_press_event",
button_press_handler)``, rather than having to write wrapper functions that
fill in the (now optional) *canvas* and *toolbar* parameters.


Functions to compute a Path's size
==================================

Various functions were added to `~.bezier.BezierSegment` and `~.path.Path` to
allow computation of the shape/size of a `~.path.Path` and its composite Bezier
curves.

In addition to the fixes below, `~.bezier.BezierSegment` has gained more
documentation and usability improvements, including properties that contain its
dimension, degree, control_points, and more.

Better interface for Path segment iteration
-------------------------------------------

`~.path.Path.iter_bezier` iterates through the `~.bezier.BezierSegment`'s that
make up the Path. This is much more useful typically than the existing
`~.path.Path.iter_segments` function, which returns the absolute minimum amount
of information possible to reconstruct the Path.

Fixed bug that computed a Path's Bbox incorrectly
-------------------------------------------------

Historically, `~.path.Path.get_extents` has always simply returned the Bbox of
a curve's control points, instead of the Bbox of the curve itself. While this is
a correct upper bound for the path's extents, it can differ dramatically from
the Path's actual extents for non-linear Bezier curves.


Backend-specific improvements
=============================

``savefig()`` gained a *backend* keyword argument
-------------------------------------------------

The *backend* keyword argument to ``savefig`` can now be used to pick the
rendering backend without having to globally set the backend; e.g., one can
save PDFs using the pgf backend with ``savefig("file.pdf", backend="pgf")``.

The SVG backend can now render hatches with transparency
--------------------------------------------------------

The SVG backend now respects the hatch stroke alpha. Useful applications are,
among others, semi-transparent hatches as a subtle way to differentiate columns
in bar plots.

SVG supports URLs on more artists
---------------------------------

URLs on more artists (i.e., from `.Artist.set_url`) will now be saved in
SVG files, namely, ``Tick``\s and ``Line2D``\s are now supported.

Images in SVG will no longer be blurred in some viewers
-------------------------------------------------------

A style is now supplied to images without interpolation (``imshow(...,
interpolation='none'``) so that SVG image viewers will no longer perform
interpolation when rendering themselves.

Saving SVG now supports adding metadata
---------------------------------------

When saving SVG files, metadata can now be passed which will be saved in the
file using `Dublin Core`_ and `RDF`_. A list of valid metadata can be found in
the documentation for `.FigureCanvasSVG.print_svg`.

.. _Dublin Core: https://www.dublincore.org/specifications/dublin-core/
.. _RDF: https://www.w3.org/1999/.status/PR-rdf-syntax-19990105/status

Saving PDF metadata via PGF now consistent with PDF backend
-----------------------------------------------------------

When saving PDF files using the PGF backend, passed metadata will be
interpreted in the same way as with the PDF backend.  Previously, this metadata
was only accepted by the PGF backend when saving a multi-page PDF with
`.backend_pgf.PdfPages`, but is now allowed when saving a single figure, as
well.

NbAgg and WebAgg no longer use jQuery & jQuery UI
-------------------------------------------------

Instead, they are implemented using vanilla JavaScript. Please report any
issues with browsers.